示例#1
0
def test_piecewise_linear(
    gamma: float,
    slopes: np.ndarray,
    knot_spacings: np.ndarray,
    hybridize: bool,
) -> None:
    '''
    Test to check that minimizing the CRPS recovers the quantile function
    '''
    num_samples = 500  # use a few samples for timeout failure

    gammas = mx.nd.zeros((num_samples, )) + gamma
    slopess = mx.nd.zeros((num_samples, len(slopes))) + mx.nd.array(slopes)
    knot_spacingss = mx.nd.zeros(
        (num_samples, len(knot_spacings))) + mx.nd.array(knot_spacings)

    pwl_sqf = PiecewiseLinear(gammas, slopess, knot_spacingss)

    samples = pwl_sqf.sample()

    # Parameter initialization
    gamma_init = gamma - START_TOL_MULTIPLE * TOL * gamma
    slopes_init = slopes - START_TOL_MULTIPLE * TOL * slopes
    knot_spacings_init = knot_spacings
    # We perturb knot spacings such that even after the perturbation they sum to 1.
    mid = len(slopes) // 2
    knot_spacings_init[:mid] = (knot_spacings[:mid] -
                                START_TOL_MULTIPLE * TOL * knot_spacings[:mid])
    knot_spacings_init[mid:] = (knot_spacings[mid:] +
                                START_TOL_MULTIPLE * TOL * knot_spacings[mid:])

    init_biases = [gamma_init, slopes_init, knot_spacings_init]

    # check if it returns original parameters of mapped
    gamma_hat, slopes_hat, knot_spacings_hat = maximum_likelihood_estimate_sgd(
        PiecewiseLinearOutput(len(slopes)),
        samples,
        init_biases=init_biases,
        hybridize=hybridize,
        learning_rate=PositiveFloat(0.01),
        num_epochs=PositiveInt(20),
    )

    # Since the problem is highly non-convex we may not be able to recover the exact parameters
    # Here we check if the estimated parameters yield similar function evaluations at different quantile levels.
    quantile_levels = np.arange(0.1, 1.0, 0.1)

    # create a LinearSplines instance with the estimated parameters to have access to .quantile
    pwl_sqf_hat = PiecewiseLinear(
        mx.nd.array(gamma_hat),
        mx.nd.array(slopes_hat).expand_dims(axis=0),
        mx.nd.array(knot_spacings_hat).expand_dims(axis=0),
    )

    # Compute quantiles with the estimated parameters
    quantiles_hat = np.squeeze(
        pwl_sqf_hat.quantile(mx.nd.array(quantile_levels).expand_dims(axis=0),
                             axis=1).asnumpy())

    # Compute quantiles with the original parameters
    # Since params is replicated across samples we take only the first entry
    quantiles = np.squeeze(
        pwl_sqf.quantile(
            mx.nd.array(quantile_levels).expand_dims(axis=0).repeat(
                axis=0, repeats=num_samples),
            axis=1,
        ).asnumpy()[0, :])

    for ix, (quantile, quantile_hat) in enumerate(zip(quantiles,
                                                      quantiles_hat)):
        assert np.abs(quantile_hat - quantile) < TOL * quantile, (
            f"quantile level {quantile_levels[ix]} didn't match:"
            f" "
            f"q = {quantile}, q_hat = {quantile_hat}")
 (
     NegativeBinomialOutput(),
     mx.nd.random.normal(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     UniformOutput(),
     mx.nd.random.normal(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     PiecewiseLinearOutput(num_pieces=3),
     mx.nd.random.normal(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     MixtureDistributionOutput([GaussianOutput(), StudentTOutput()]),
     mx.nd.random.normal(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     MixtureDistributionOutput(
         [
示例#3
0
def forecast_dataset(dataset,
                     epochs=100,
                     learning_rate=1e-3,
                     num_samples=100,
                     model="SimpleFeedForward",
                     r_method="ets",
                     alpha=0,
                     distrib="Gaussian"):
    if distrib == "Gaussian":
        distr_output = GaussianOutput()
    elif distrib == "Laplace":
        distr_output = LaplaceOutput()
    elif distrib == "PiecewiseLinear":
        distr_output = PiecewiseLinearOutput(num_pieces=2)
    elif distrib == "Uniform":
        distr_output = UniformOutput()
    elif distrib == "Student":
        distr_output = StudentTOutput()
    else:
        distr_output = None

    if model != "GaussianProcess":
        ctx = mx.Context("gpu")
    else:
        ctx = mx.Context("cpu")

    # Trainer
    trainer = Trainer(epochs=epochs,
                      learning_rate=learning_rate,
                      num_batches_per_epoch=100,
                      ctx=ctx,
                      hybridize=True if model[0] != "c" else False)

    # Estimator (if machine learning model)
    if model == "SimpleFeedForward":  # 10s / epochs for context 60*24
        estimator = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[10],
            prediction_length=dataset.prediction_length,
            context_length=dataset.context_length,
            freq=dataset.freq,
            trainer=trainer,
            distr_output=distr_output)
    elif model == "cSimpleFeedForward":  # 10s / epochs for context 60*24
        estimator = CustomSimpleFeedForwardEstimator(
            prediction_length=dataset.prediction_length,
            context_length=dataset.context_length,
            freq=dataset.freq,
            trainer=trainer,
            num_cells=40,
            alpha=alpha,
            distr_output=distr_output,
            distr_output_type=distrib)
    elif model == "CanonicalRNN":  # 80s /epochs for context 60*24, idem for 60*1
        estimator = canonical.CanonicalRNNEstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepAr":
        estimator = deepar.DeepAREstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepFactor":  # 120 s/epochs if one big time serie, 1.5s if 183 time series
        estimator = deep_factor.DeepFactorEstimator(
            freq=dataset.freq,
            context_length=dataset.context_length,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            distr_output=distr_output,
        )
    elif model == "DeepState":  # Very slow on cpu
        estimator = deepstate.DeepStateEstimator(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            cardinality=list([1]),
            use_feat_static_cat=False)
    elif model == "GaussianProcess":  # CPU / GPU problem
        estimator = gp_forecaster.GaussianProcessEstimator(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            trainer=trainer,
            cardinality=1)
    elif model == "NPTS":
        estimator = npts.NPTSEstimator(
            freq=dataset.freq, prediction_length=dataset.prediction_length)
    elif model == "MQCNN":
        estimator = seq2seq.MQCNNEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            quantiles=list([0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]))
    elif model == "MQRNN":
        estimator = seq2seq.MQRNNEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            quantiles=list([0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]))
    elif model == "RNN2QR":  # Must be investigated
        estimator = seq2seq.RNN2QRForecaster(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            cardinality=dataset.cardinality,
            embedding_dimension=1,
            encoder_rnn_layer=1,
            encoder_rnn_num_hidden=1,
            decoder_mlp_layer=[1],
            decoder_mlp_static_dim=1)
    elif model == "SeqToSeq":  # Must be investigated
        estimator = seq2seq.Seq2SeqEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer,
            cardinality=[1],
            embedding_dimension=1,
            decoder_mlp_layer=[1],
            decoder_mlp_static_dim=1,
            encoder=Seq2SeqEncoder())
    elif model == "Transformer":  # Make the computer lag the first time
        estimator = transformer.TransformerEstimator(
            prediction_length=dataset.prediction_length,
            freq=dataset.freq,
            context_length=dataset.context_length,
            trainer=trainer)

    else:
        estimator = None

    # Predictor (directly if non machine learning model and from estimator if machine learning)
    if model == "Prophet":
        predictor = prophet.ProphetPredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
        )
    elif model == "R":
        predictor = r_forecast.RForecastPredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            method_name=r_method)
    elif model == "SeasonalNaive":
        predictor = seasonal_naive.SeasonalNaivePredictor(
            freq=dataset.freq,
            prediction_length=dataset.prediction_length,
            season_length=24)
    else:
        predictor = estimator.train(dataset.train_ds)
        if model[0] != "c":
            predictor.serialize(Path("temp"))
            predictor = Predictor.deserialize(
                Path("temp"), ctx=mx.cpu(0))  # fix for deepstate

    # Evaluate
    forecast_it, ts_it = make_evaluation_predictions(
        dataset=dataset.test_ds,  # test dataset
        predictor=predictor,  # predictor
        num_samples=num_samples,  # num of sample paths we want for evaluation
    )

    return list(forecast_it), list(ts_it)