示例#1
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: nn.Module,
        device: torch.device,
    ) -> Predictor:
        prediction_network = NBEATSPredictionNetwork(
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            num_stacks=self.num_stacks,
            widths=self.widths,
            num_blocks=self.num_blocks,
            num_block_layers=self.num_block_layers,
            expansion_coefficient_lengths=self.expansion_coefficient_lengths,
            sharing=self.sharing,
            stack_types=self.stack_types,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
        )
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: nn.Module,
        device: torch.device,
    ) -> Predictor:
        prediction_splitter = self.create_instance_splitter("test")

        prediction_network = SimpleFeedForwardPredictionNetwork(
            num_hidden_dimensions=self.num_hidden_dimensions,
            prediction_length=self.prediction_length,
            context_length=self.context_length,
            distr_output=self.distr_output,
            batch_normalization=self.batch_normalization,
            mean_scaling=self.mean_scaling,
            num_parallel_samples=self.num_parallel_samples,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
        )
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: TimeGradTrainingNetwork,
        device: torch.device,
    ) -> Predictor:
        prediction_network = TimeGradPredictionNetwork(
            input_size=self.input_size,
            target_dim=self.target_dim,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            diff_steps=self.diff_steps,
            loss_type=self.loss_type,
            beta_end=self.beta_end,
            beta_schedule=self.beta_schedule,
            residual_layers=self.residual_layers,
            residual_channels=self.residual_channels,
            dilation_cycle_length=self.dilation_cycle_length,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
            conditioning_length=self.conditioning_length,
            num_parallel_samples=self.num_parallel_samples,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
        )
示例#4
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: TransformerTempFlowTrainingNetwork,
        device: torch.device,
    ) -> Predictor:
        prediction_network = TransformerTempFlowPredictionNetwork(
            input_size=self.input_size,
            target_dim=self.target_dim,
            num_heads=self.num_heads,
            act_type=self.act_type,
            d_model=self.d_model,
            dim_feedforward_scale=self.dim_feedforward_scale,
            num_encoder_layers=self.num_encoder_layers,
            num_decoder_layers=self.num_decoder_layers,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            dropout_rate=self.dropout_rate,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
            flow_type=self.flow_type,
            n_blocks=self.n_blocks,
            hidden_size=self.hidden_size,
            n_hidden=self.n_hidden,
            conditioning_length=self.conditioning_length,
            dequantize=self.dequantize,
            num_parallel_samples=self.num_parallel_samples,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
        )
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: TransformerTrainingNetwork,
        device: torch.device,
    ) -> Predictor:

        prediction_network = TransformerPredictionNetwork(
            input_size=self.input_size,
            num_heads=self.num_heads,
            act_type=self.act_type,
            dropout_rate=self.dropout_rate,
            d_model=self.d_model,
            dim_feedforward_scale=self.dim_feedforward_scale,
            num_encoder_layers=self.num_encoder_layers,
            num_decoder_layers=self.num_decoder_layers,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            distr_output=self.distr_output,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
            num_parallel_samples=self.num_parallel_samples,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
        )
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: DeepVARTrainingNetwork,
        device: torch.device,
    ) -> Predictor:
        prediction_network = DeepVARPredictionNetwork(
            input_size=self.input_size,
            target_dim=self.target_dim,
            num_parallel_samples=self.num_parallel_samples,
            num_layers=self.num_layers,
            num_cells=self.num_cells,
            cell_type=self.cell_type,
            history_length=self.history_length,
            context_length=self.context_length,
            prediction_length=self.prediction_length,
            distr_output=self.distr_output,
            dropout_rate=self.dropout_rate,
            cardinality=self.cardinality,
            embedding_dimension=self.embedding_dimension,
            lags_seq=self.lags_seq,
            scaling=self.scaling,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            device=device,
            output_transform=self.output_transform,
        )
示例#7
0
    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: LSTNetTrain,
        device: torch.device,
    ) -> PyTorchPredictor:
        prediction_network = LSTNetPredict(
            num_series=self.num_series,
            channels=self.channels,
            kernel_size=self.kernel_size,
            rnn_cell_type=self.rnn_cell_type,
            rnn_num_cells=self.rnn_num_cells,
            skip_rnn_cell_type=self.skip_rnn_cell_type,
            skip_rnn_num_cells=self.skip_rnn_num_cells,
            skip_size=self.skip_size,
            ar_window=self.ar_window,
            context_length=self.context_length,
            horizon=self.horizon,
            prediction_length=self.prediction_length,
            dropout_rate=self.dropout_rate,
            output_activation=self.output_activation,
            scaling=self.scaling,
        ).to(device)

        copy_parameters(trained_network, prediction_network)
        input_names = get_module_forward_input_names(prediction_network)
        prediction_splitter = self.create_instance_splitter("test")

        return PyTorchPredictor(
            input_transform=transformation + prediction_splitter,
            input_names=input_names,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.horizon or self.prediction_length,
            device=device,
        )