def measure(individual): func = numpy_phenotype(individual) data = load_boston() yhat = func(*data.data.T) if np.isscalar(yhat): yhat = np.ones_like(data.target) * yhat fit = nrmse(data.target, yhat), len(individual) return replace_nan(fit)
def measure(ind): g = lambda x: x**2 - 1.1 points = np.linspace(-1, 1, 100, endpoint=True) y = g(points) f = gp.individual.numpy_phenotype(ind) yhat = f(points) if np.isscalar(yhat): yhat = np.ones_like(y) * yhat return nrmse(y, yhat), len(gp.individual.resolve_sc(ind))
def error(ind, *args): g = lambda x: x**2 - 1.1 points = np.linspace(-1, 1, 100, endpoint=True) y = g(points) f = gp.individual.numpy_phenotype(ind) yhat = f(points, *args) if np.isscalar(yhat): yhat = np.ones_like(y) * yhat return nrmse(y, yhat)
def error(ind, *args): g = lambda x: x**2 - 1.1 points = np.linspace(-1, 1, 100, endpoint=True).reshape(ind.arity, -1) y = g(points) f = phenotype(ind) args[0].dot(points) + args[ 1] # ??? without this there will be segmentation fault yhat = f(points, *args).reshape(y.shape) return nrmse(y, yhat)