# and M[i] returns all measurements on metric i pca = g.PCA(M) pca.plot() ### Make network PCA with partitions ### dl = g.DownloadGmaneData('~/.gmane2/') dl.downloadedStats() # might take a while print("made liststats") lm = g.LoadMessages(dl.lists[0][0], basedir="~/.gmane2/") print("loaded messages") ds = g.ListDataStructures(lm) print("made datastructures") iN = g.InteractionNetwork(ds) print("made interaction network") nm = g.NetworkMeasures(iN) print("network mesaures") # Make PCA of degree, betweenness and clustering # with in, out and total degree and strengths # and with symmetry related measures npca = g.NetworkPCA(nm) # Make network partitioning np = g.NetworkPartitioning(nm, 3, "g") print("partitioned network") # Plot PCA with partitions npca = g.NetworkPCA(nm, np)
PDIR="pickledir/" NEs=[] # for evolutions of the networks for lid in dl.downloaded_lists[:1]: label=labels[lid] NEs.append(pRead("{}neP{}.pickle".format(PDIR,label))) print(label+"{0:.2f} for PICKLE loading evolved PCA structures".format(T.time()-TT)); TT=T.time() # NEs[0].network_measures[X] have E, N, degrees, etc and my be ok to make network partition ne=NEs[0] # snapshots ordenados nm=ne.networks_measures[-1] # nao achei network partitionings no ne (binario de versao antiga da classe?) # fazendo o partitionings np=g.NetworkPartitioning(nm) p.figure(figsize=(10.,3.)) p.subplots_adjust(left=0.08,bottom=0.18,right=0.99,top=0.87) p.bar([i[0]-0.5 for i in np.bins], np.empirical_distribution, alpha=.7, label="empirical distribution") #p.bar(n.log([i[0]-0.5 for i in np.bins]), # n.log( np.empirical_distribution), # alpha=.7, label="empirical distribution") centers=[i[0] for i in np.bins] binomial_probs=[] for i, bin_ in enumerate(np.bins): llimit=bin_[0] rlimit=bin_[1]
dreload(g, exclude="pytz") dl = g.DownloadGmaneData('~/.gmane2/') dl.downloadedStats() # might take a while print("made liststats") lm = g.LoadMessages(dl.lists[0][0], basedir="~/.gmane2/") print("loaded messages") ds = g.ListDataStructures(lm) print("made datastructures") iN = g.InteractionNetwork(ds) print("made interaction network") nm = g.NetworkMeasures(iN) print("network mesaures") np = g.NetworkPartitioning(nm) print("partitioned network") np2 = g.NetworkPartitioning(nm, 2) print("partitioned network") np3 = g.NetworkPartitioning(nm, 3) print("partitioned network") np_ = g.NetworkPartitioning(nm, 1, "g") print("partitioned network") np2_ = g.NetworkPartitioning(nm, 2, "g") print("partitioned network") np3_ = g.NetworkPartitioning(nm, 3, "g") print("partitioned network") ps = [np, np2, np3] # partition by strength pg = [np_, np2_, np3_] # partition by degree
print("{0:.2f} for statistics along time".format(T.time() - TT)) TT = T.time() tss.append(ts) pDump(ts, "{}ts{}.pickle".format(PDIR, lid)) iN = g.InteractionNetwork(ds) print("made interaction network") iNs.append(iN) pDump(iN, "{}iN{}.pickle".format(PDIR, lid)) nm = g.NetworkMeasures(iN, exclude=["rich_club"]) print("network mesaures") nms.append(nm) pDump(nm, "{}nm{}.pickle".format(PDIR, lid)) np2_ = g.NetworkPartitioning(nm, 2, "g") print("partitioned network") nps.append(np2_) pDump(nm, "{}np{}.pickle".format(PDIR, lid)) data_ = [] count = 0 for lid in dl.lists[4:6]: lid = lid[0] ds = dss[count] np = nps[count] count += 1 date1 = ds.messages[ds.message_ids[0]][2].isoformat().split("T")[0] date2 = ds.messages[ds.message_ids[-1]][2].isoformat().split("T")[0] N = ds.n_authors Ns = [len(i) for i in np.sectorialized_agents__]