示例#1
0
 def gmwsd(self, code, valstr, startdate, enddate):
     # 假设startdate,enddate均为datetime/time 格式
     cols = [
         'strtime', 'open', 'high', 'low', 'close', 'volume', 'amount',
         'settle_price'
     ]
     today = dt.datetime.today()
     if 'strtime' not in valstr:
         valstr = ','.join(['strtime', valstr])
     if enddate.strftime('%Y-%m-%d') >= today.strftime(
             '%Y-%m-%d'):  # 需要取今日数据
         nowtime = dt.datetime.now()
         if nowtime.hour * 100 + nowtime.minute > 1500:  # 收盘后请求当日数据,根据tick数据构建
             head = dt.datetime(year=today.year,
                                month=today.month,
                                day=today.day,
                                hour=15)
             tail = dt.datetime(year=today.year,
                                month=today.month,
                                day=today.day,
                                hour=16)
             tickdata = md.get_ticks(code,
                                     head.strftime('%Y-%m-%d %H:%M:%S'),
                                     tail.strftime('%Y-%m-%d %H:%M:%S'))
             t = tickdata[-1]
             todaydata = [
                 t.strtime, t.open, t.high, t.low, t.last_price,
                 t.cum_volume, t.cum_amount, t.settle_price
             ]  # 将所有字段添加if needed
         else:  #收盘前请求当日数据,将返回前一日结果
             lastdata = md.get_last_dailybars(code)
             t = lastdata[0]
             todaydata = [
                 t.strtime, t.open, t.high, t.low, t.close, t.volume,
                 t.amount, t.settle_price
             ]
         todaydata = pd.DataFrame([todaydata], columns=cols)
     else:
         todaydata = pd.DataFrame()
     if startdate == enddate:  # 不再需要其他数据
         return todaydata.loc[:, valstr.split(',')]
     else:
         tempdata = md.get_dailybars(code, startdate.strftime('%Y-%m-%d'),
                                     enddate.strftime('%Y-%m-%d'))
         predata = [[
             t.strtime, t.open, t.high, t.low, t.close, t.volume, t.amount,
             t.settle_price
         ] for t in tempdata]
         predata = pd.DataFrame(predata, columns=cols)
         return predata.append(todaydata,
                               ignore_index=True).loc[:,
                                                      valstr.split(',')]
示例#2
0
r = md.get_last_bars('SHSE.600000,', 60)
print('get_last_bars: ', len(r))

#提取最新N笔bar数据
r = md.get_last_n_bars('SHSE.600000',60,10)
print('get_last_n_bars(10): ', len(r))

#提取日频数据
r = md.get_dailybars(
    'SHSE.600000',
    '2015-05-01 00:00:00',
    '2015-05-20 23:59:59')
print('get_dailybars: ', len(r))

#提取dailybar快照
r = md.get_last_dailybars('SHSE.600000,')
print('get_last_dailybars: ', len(r))

#提取最新N笔dailybar数据
r = md.get_last_n_dailybars('SHSE.600000', 10)
print('get_last_n_dailybars(10): ', len(r))

#提取交易代码
r = md.get_instruments('SHSE', 1, 1)
print('get_instruments: ', len(r))

#根据期货品种提取交易代码
r = md.get_instruments_by_name('ag')
print('get_instruments_by_name', len(r))

#提取指数的成分股代码
示例#3
0
r = md.get_bars(
    'CFFEX.IF1512',
    60,
    '2015-05-01 09:30:00',
    '2015-05-10 09:31:00',
)
print('get_bars: ', len(r))

r = md.get_last_bars('CFFEX.IF1512,', 60)
print('get_last_bars: ', len(r))

r = md.get_last_n_bars(
    'CFFEX.IF1512',
    60,
    10)
print('get_last_n_bars(10): ', len(r))

r = md.get_dailybars(
    'CFFEX.IF1512',
    '2015-05-01 00:00:00',
    '2015-05-20 23:59:59')
print('get_dailybars: ', len(r))

r = md.get_last_dailybars('CFFEX.IF1512,')
print('get_last_dailybars: ', len(r))

r = md.get_last_n_dailybars('CFFEX.IF1512', 10)
print('get_last_n_dailybars(10): ', len(r))

input()
示例#4
0
def get_last_dailybars(symbol_list):
    symbol_list = mtsymbol_list(symbol_list)
    var = md.get_last_dailybars(symbol_list)
    ret = bar_topd(var,'code')
    return ret
示例#5
0
def get_last_dailybars(symbol_list):
    symbol_list = mtsymbol_list(symbol_list)
    var = md.get_last_dailybars(symbol_list)
    ret = bar_topd(var, 'code')
    return ret
示例#6
0
def updatePal(palPath=None):
    start = time.time()

    md.init('18201141877', 'Wqxl7309')
    if not w.isconnected():
        w.start()

    palPath = r'E:\bqfcts\bqfcts\data\Paltest' if palPath is None else palPath
    tempFilePath = os.path.join(palPath,'temp_files')
    if not os.path.exists(tempFilePath):
        os.mkdir(tempFilePath)
    matName = 'data_20150701_now.mat'

    savedPal = h5py.File(os.path.join(palPath,matName))
    # print(read_cell(savedPal,'sec_names'))
    nextTrd = dt.datetime.strptime(str(int(savedPal['nexttrd'][0][0])),'%Y%m%d')
    nextTrdStr = nextTrd.strftime('%Y-%m-%d')
    updateTime = dt.datetime(nextTrd.year,nextTrd.month,nextTrd.day,15,30,0)
    if updateTime > dt.datetime.now():
        print('not update time yet')
        return
    else:
        availableDateStr = md.get_last_dailybars('SHSE.000001')[0].strtime[:10]
        if int(availableDateStr.replace('-','')) <= int(nextTrdStr.replace('-','')):
            print('new data not avaliable yet')
            return
        else:
            print('will update from {0} to {1}'.format(nextTrdStr,availableDateStr))

    betweenDays = [tdt.strtime[:10] for tdt in md.get_calendar('SHSE',nextTrdStr,availableDateStr)]
    if nextTrdStr!=availableDateStr:    # 避免同一日期重复
        betweenDays.append(availableDateStr)
    betweenDaysNumber = [int(tdt.replace('-','')) for tdt in betweenDays]
    newDateNum = len(betweenDaysNumber)

    # 更新前 先备份数据
    backupPath = os.path.join(palPath,'backup')
    cpResult = os.system(r'COPY {0} {1} /Y'.format(os.path.join(palPath,matName),os.path.join(backupPath,matName)))
    assert cpResult==0,'backup failed'

    gmDateFmt = 'yyyy-mm-dd'

    # update indice
    indiceNames = ['sh','hs300','zz500','sz50']
    indiceCodes = ['000001','000300','000905','000016']
    symbols = ','.join(['SHSE.{}'.format(sbl) for sbl in indiceCodes])
    indiceBars = md.get_dailybars(symbols,nextTrdStr,availableDateStr)
    for dumi,idx in enumerate(indiceNames):
        bars = indiceBars[dumi::4]
        idxret = np.array([bar.close for bar in bars])/np.array([bar.pre_close for bar in bars]) - 1
        idxArray = np.array([betweenDaysNumber,
                             [bar.open for bar in bars],
                             [bar.high for bar in bars],
                             [bar.low for bar in bars],
                             [bar.close for bar in bars],
                             [bar.volume for bar in bars],
                             [bar.amount for bar in bars],
                             idxret
                             ])
        # newIndex = np.column_stack([savedPal['index_{}'.format(idx)][:], idxArray])
        pd.DataFrame(np.transpose(idxArray)).to_csv(os.path.join(tempFilePath,'index_{}.csv'.format(idx)),index=False,header=False)

    # update stock info
    nCut = savedPal['N_cut'][0][0]    # 6000
    nEnd = savedPal['N_end'][0][0]    # last end date id ex.6732
    stockNames = read_cell(savedPal, 'stockname')
    savedStkcdsGM = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in stockNames]
    savedStkNum = len(stockNames)
    listedStkcdsWind =  w.wset('sectorconstituent','date={};sectorid=a001010100000000'.format(availableDateStr)).Data[1]
    newStkcdsWind = sorted(list(set(listedStkcdsWind) - set(stockNames)))
    if newStkcdsWind:
        stockNames.extend( newStkcdsWind )
        newStkIpos = [int(tdt.strftime('%Y%m%d')) for tdt in w.wss(newStkcdsWind, 'ipo_date').Data[0]]
        newIpoIds = [(w.tdayscount(nextTrd,str(ipo)).Data[0][0]+nEnd) for ipo in newStkIpos]
        newStockip = pd.DataFrame([[int(newStkcdsWind[dumi][:6]), newStkIpos[dumi], newIpoIds[dumi],0,0,0,0,0] for dumi in range(len(newStkcdsWind))])
        newStockip.to_csv( os.path.join(tempFilePath,'stockip.csv'),index=False,header=False )
    else:
        pd.DataFrame([]).to_csv(os.path.join(tempFilePath, 'stockip.csv'), index=False, header=False)
    newStkcdsGm = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in newStkcdsWind]
    allStkcdsGM = savedStkcdsGM + newStkcdsGm     # 全体股票包含已退市 与pal行数相同
    # allSecNames = pd.DataFrame(w.wss(stockNames,'sec_name').Data[0])
    allInstruments = md.get_instruments('SZSE', 1, 0) + md.get_instruments('SHSE', 1, 0)
    allInstrumentsDF = pd.DataFrame([[inds.symbol, inds.sec_name] for inds in allInstruments],columns=['symbol','sec_name']).set_index('symbol')
    allSecNames = allInstrumentsDF.loc[allStkcdsGM,'sec_name']
    allSecNames.to_csv( os.path.join(tempFilePath, 'sec_names.csv'), index=False, header=False )
    pd.DataFrame(newStkcdsWind).to_csv( os.path.join(tempFilePath, 'stockname.csv'), index=False, header=False )

    # update trade info
    pages = ['date','open','high','low','close','volume','amount','pctchg','flow_a_share','total_share','adjfct','adjprc','isst']
    newPal = {}
    for page in pages:
        newPal[page] = pd.DataFrame(np.zeros([len(allStkcdsGM), newDateNum]),index=allStkcdsGM,columns=betweenDays)
    lastPal = pd.DataFrame(savedPal['Pal'][:,-1,:],columns=savedStkcdsGM)
    barsDaily = md.get_dailybars(','.join(allStkcdsGM), nextTrdStr, availableDateStr)
    for bar in barsDaily:
        tdt = bar.strtime[:10]
        stk = '.'.join([bar.exchange,bar.sec_id])
        newPal['date'].loc[stk, tdt] = int(tdt.replace('-',''))
        newPal['open'].loc[stk, tdt] = bar.open
        newPal['high'].loc[stk, tdt] = bar.high
        newPal['low'].loc[stk, tdt] = bar.low
        newPal['close'].loc[stk, tdt] = bar.close
        newPal['volume'].loc[stk, tdt] = bar.volume
        newPal['amount'].loc[stk, tdt] = bar.amount
        newPal['pctchg'].loc[stk, tdt] = bar.close/bar.pre_close - 1
        # 计算自算复权因子 : 前一日收盘价*(1+当日收益率)/当日收盘价 s.t. (当日收盘价*当日复权因子)/前一日收盘价 = 1+ret
        # 若当日没有交易 : 沿用前一日 复权因子  循环外处理
        # 若前一日没有交易 前一日收盘价 特殊处理:
        #  当日有交易 : 取停牌前最后一个交易日的 收盘价
        #  当日没交易 没有退市 : 沿用前一日复权因子  循环外处理
        #  当日没交易 已经退市 : 沿用前一日复权因子  循环外处理
        # 若新股上市第一天 : 复权因子为1
        if stk in newStkcdsGm:
            newPal['adjfct'].loc[stk, tdt] = 1
        else:
            noTrdLast = (lastPal.loc[0, stk] == 0) if tdt == nextTrdStr else (newPal['date'].loc[stk, betweenDays[betweenDays.index(tdt) - 1]] == 0)
            if noTrdLast: # 前一日没交易 今日有交易(否则不应出现在bars里面)
                lastBar = md.get_last_n_dailybars(stk, 2, end_time=tdt)[-1]
                newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * lastBar.close * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close
            else:
                preClose = lastPal.loc[4,stk] if tdt==nextTrdStr else newPal['close'].loc[stk,betweenDays[betweenDays.index(tdt)-1]]
                newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * preClose * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close
    for dumi,tdt in enumerate(betweenDays):
        idx = newPal['adjfct'].loc[:,tdt]==0
        idx = idx.values
        if tdt==nextTrdStr:
            newPal['adjfct'].loc[idx[:savedStkNum], tdt] = lastPal.loc[15,:].values[idx[:savedStkNum]]
        else:
            newPal['adjfct'].loc[idx, tdt] = newPal['adjfct'].loc[idx, betweenDays[dumi-1]]
    newPal['adjprc'] = newPal['adjfct']*newPal['close']

    shareBar = md.get_share_index(','.join(allStkcdsGM), nextTrdStr, availableDateStr)
    for bar in shareBar:
        tdt = bar.pub_date
        stk = bar.symbol
        newPal['flow_a_share'].loc[stk, tdt] = bar.flow_a_share
        newPal['total_share'].loc[stk, tdt] = bar.total_share

    isST = np.array([int('ST' in sn) for sn in allSecNames.values])
    newPal['isst'] = pd.DataFrame(np.repeat(np.reshape(isST,(isST.shape[0],1)),len(betweenDays),axis=1), index=allStkcdsGM, columns=betweenDays)

    for page in newPal:
        newPal[page].to_csv(os.path.join(tempFilePath,'{}.csv'.format(page)),index=False,header=False )

    print('Pal temp files update finished with {0} stocks and {1} days in {2} seconds '.format(len(newStkcdsWind),len(betweenDays),time.time() - start))