示例#1
0
def test_exceptions():
    """
    Test ValueError exception thrown if improper input arguments
    """
    with pytest.raises(ValueError):
        RandomMover(diffusion_coef=-1000)

    with pytest.raises(ValueError):
        RandomMover(uncertain_factor=0)
示例#2
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2012, 9, 15, 12, 0)
    mapfile = get_datafile(os.path.join(base_dir, './LongIslandSoundMap.BNA'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=48),
                  time_step=3600,
                  map=gnome_map,
                  uncertain=True,
                  cache_enabled=True)

    netcdf_file = os.path.join(base_dir, 'script_long_island.nc')
    scripting.remove_netcdf(netcdf_file)

    print 'adding outputters'
    model.outputters += Renderer(mapfile, images_dir, size=(800, 600))
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-72.419992, 41.202120,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=500000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (10, 45))
    series[1] = (start_time + timedelta(hours=18), (10, 90))
    series[2] = (start_time + timedelta(hours=30), (10, 135))
    series[3] = (start_time + timedelta(hours=42), (10, 180))
    series[4] = (start_time + timedelta(hours=54), (10, 225))

    wind = Wind(timeseries=series, units='m/s')
    model.movers += WindMover(wind)

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, r"./LI_tidesWAC.CUR"))
    tide_file = get_datafile(os.path.join(base_dir, r"./CLISShio.txt"))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))
    model.movers += c_mover
    model.environment += c_mover.tide

    print 'viewport is:', [
        o.viewport for o in model.outputters if isinstance(o, Renderer)
    ]

    return model
示例#3
0
def allWeatherers(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    map_folder = os.path.join(data_path, map_path)
    if not(os.path.exists(map_folder)):
        print('The map folder is incorrectly set:', map_folder)
    mapfile = get_datafile( os.path.join(map_folder,map) )
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=1))
    if save_nc:
        nc_outputter = NetCDFOutput(netcdf_file, which_data='most', output_timestep=timedelta(hours=1))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    print 'adding weatherers'
    water = Water(280.92)
    wind = constant_wind(20.0, 117, 'knots')
    waves = Waves(wind, water)
    model.weatherers += Evaporation(water, wind)
    model.weatherers += Emulsification(waves)
    model.weatherers += NaturalDispersion(waves, water)
    return model
示例#4
0
def model(sample_model_fcn, output_filename):
    """
    Use fixture model_surface_release_spill and add a few things to it for the
    test
    """
    model = sample_model_fcn['model']

    model.cache_enabled = True
    model.spills += \
        point_line_release_spill(num_elements=5,
                                 start_position=sample_model_fcn['release_start_pos'],
                                 release_time=model.start_time,
                                 end_release_time=model.start_time + model.duration,
                                 substance=test_oil,
                                 amount=1000,
                                 units='kg')

    water = Water()
    model.movers += RandomMover(diffusion_coef=100000)
    model.movers += constant_wind_mover(1.0, 0.0)
    model.weatherers += Evaporation(water=water, wind=model.movers[-1].wind)

    model.outputters += NetCDFOutput(output_filename)

    model.rewind()

    return model
示例#5
0
def setup_model():
    print 'initializing the model'
    # start with default time,duration...this will be changed when model is run
    model = Model(
    )  #change to use all defaults and set time_step also in Setup_TAP!!
    mapfile = os.path.join(setup.MapFileDir, setup.MapFileName)
    print 'adding the map: ', mapfile
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    print 'adding a GridCurrentMover:'
    c_mover = GridCurrentMover(filename=setup.curr_fn, extrapolate=True)
    model.movers += c_mover

    print 'adding a WindMover:'
    w = Wind(filename=setup.wind_fn)
    w_mover = WindMover(w)
    # w_mover = GridWindMover(wind_file=setup.w_filelist)
    model.movers += w_mover

    if setup.diff_coef is not None:
        print 'adding a RandomMover:'
        random_mover = RandomMover(diffusion_coef=setup.diff_coef)  #in cm/s
        model.movers += random_mover

    return model
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 3, 0)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours = 48),
                  time_step=3600)

    mapfile = get_datafile(os.path.join(base_dir, 'Perfland.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=1, raster_size=1024*1024)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(800, 600),
                        output_timestep=timedelta(hours=1),
                        timestamp_attrib={'size': 'medium', 'color':'uncert_LE'})
    renderer.set_timestamp_attrib(format='%a %c')
    renderer.graticule.set_DMS(True)
#     renderer.viewport = ((-124.25, 47.5), (-122.0, 48.70))


    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=5000,
                                     start_position=(0.0,
                                                     0.0,
                                                     0.0),
                                     release_time=start_time)

    model.spills += spill1

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    model.movers += constant_wind_mover(13, 270, units='m/s')

    print 'adding a current mover:'
#     curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
#
#     # uncertain_time_delay in hours
#     c_mover = GridCurrentMover(curr_file)
#     c_mover.uncertain_cross = 0  # default is .25
#
#     model.movers += c_mover

    return model
示例#7
0
def CurrentsAndWinds(timeStep, start_time, duration, weatheringSteps, mapfile, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    print (data_path, map_path, mapfile)
    mapfile = get_datafile(os.path.join(data_path, map_path, mapfile))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=timestep_outputs))
    if save_nc:
        nc_outputter = NetCDFOutput('currentsAndWinds_example.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    return model
示例#8
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2012, 10, 25, 0, 1)
    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=6),
                  time_step=900)

    mapfile = get_datafile(os.path.join(base_dir, 'nyharbor.bna'))

    print 'adding the map'
    '''TODO: sort out MapFromBna's map_bounds parameter...
    it does nothing right now, and the spill is out of bounds'''
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
    #     renderer.viewport = ((-73.5, 40.5), (-73.1, 40.75))
    #     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=1000,
                                      start_position=(-74.15, 40.5, 0.0),
                                      release_time=start_time)

    model.spills += spill1

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    model.movers += constant_wind_mover(4, 270, units='m/s')

    print 'adding a current mover:'

    # url is broken, fix and include the following section
    #     url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/jcwarner/Projects/Sandy/triple_nest/00_dir_NYB05.ncml')
    # #     cf = roms_field('nos.tbofs.fields.n000.20160406.t00z_sgrid.nc')
    #     cf = GridCurrent.from_netCDF(url)
    #     renderer.add_grid(cf.grid)
    #     renderer.delay = 25
    #     u_mover = PyCurrentMover(cf, default_num_method='Euler')
    #     model.movers += u_mover
    #

    return model
示例#9
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, 'LowerMississippiMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    print 'initializing the model'
    start_time = datetime(2012, 9, 15, 12, 0)

    # default to now, rounded to the nearest hour
    model = Model(time_step=600,
                  start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map,
                  uncertain=True)

    print 'adding outputters'
    model.outputters += Renderer(mapfile, images_dir, image_size=(800, 600))

    netcdf_file = os.path.join(base_dir, 'script_lower_mississippi.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'

    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (2, 45))
    series[1] = (start_time + timedelta(hours=18), (2, 90))
    series[2] = (start_time + timedelta(hours=30), (2, 135))
    series[3] = (start_time + timedelta(hours=42), (2, 180))
    series[4] = (start_time + timedelta(hours=54), (2, 225))

    w_mover = WindMover(Wind(timeseries=series, units='m/s'))
    model.movers += w_mover

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'LMiss.CUR'))
    c_mover = CatsMover(curr_file)

    # but do need to scale (based on river stage)
    c_mover.scale = True
    c_mover.scale_refpoint = (-89.699944, 29.494558)

    # based on stage height 10ft (range is 0-18)
    c_mover.scale_value = 1.027154

    model.movers += c_mover

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-89.699944, 29.494558,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    return model
示例#10
0
    def test_to_dict(self, json_):
        'added a to_dict() method - test this method'

        items = [SimpleMover(velocity=(i * 0.5, -1.0, 0.0)) for i in range(2)]
        items.extend([RandomMover() for i in range(2)])

        mymovers = OrderedCollection(items, dtype=Mover)
        self._to_dict_assert(mymovers, items, json_)
示例#11
0
class TestRandomMover:

    """
    gnome.RandomMover() test

    """

    num_le = 5

    # start_pos = np.zeros((num_le,3), dtype=basic_types.world_point_type)

    start_pos = (0., 0., 0.)
    rel_time = datetime.datetime(2012, 8, 20, 13)  # yyyy/month/day/hr/min/sec
    model_time = sec_to_date(date_to_sec(rel_time) + 1)
    time_step = 15 * 60  # seconds

    mover = RandomMover()

    def reset_pos(self):
        self.pSpill['positions'] = (0., 0., 0.)
        print self.pSpill['positions']

    def test_string_representation_matches_repr_method(self):
        """
        Just print repr and str
        """

        print
        print repr(self.mover)
        print str(self.mover)
        assert True

    def test_id_matches_builtin_id(self):

        # It is not a good assumption that the obj.id property
        # will always contain the id(obj) value.  For example it could
        # have been overloaded with, say, a uuid1() generator.
        # assert id(self.mover) == self.mover.id

        pass

    def test_change_diffusion_coef(self):
        self.mover.diffusion_coef = 200000
        assert self.mover.diffusion_coef == 200000

    def test_change_uncertain_factor(self):
        self.mover.uncertain_factor = 3
        assert self.mover.uncertain_factor == 3

    def test_prepare_for_model_step(self):
        """
        Simply tests the method executes without exceptions
        """

        pSpill = sample_sc_release(self.num_le, self.start_pos)
        self.mover.prepare_for_model_step(pSpill, self.time_step,
                                          self.model_time)
        assert True
示例#12
0
def make_models():
    print 'initializing the model'

    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    models = []
    start_time = datetime(2012, 10, 27, 0, 30)
    duration_hrs=23
    time_step=450
    num_steps = duration_hrs * 3600 / time_step
    names = [
             'Euler',
             'Trapezoid',
             'RK4',
             ]

    mapfile = get_datafile(os.path.join(base_dir, 'long_beach.bna'))
    print 'gen map'
    map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds
    fn = ('00_dir_roms_display.ncml.nc4')
    curr = GridCurrent.from_netCDF(filename=fn)
    models = []
    for method in names:

        mod = Model(start_time=start_time,
                    duration=timedelta(hours=duration_hrs),
                    time_step=time_step)

        mod.map = map
        spill = point_line_release_spill(num_elements=1000,
                                         start_position=(-74.1,
                                                      39.7525,
                                                      0.0),
                                         release_time=start_time)
        mod.spills += spill
        mod.movers += RandomMover(diffusion_coef=100)
        mod.movers += PyGridCurrentMover(current=curr, default_num_method=method)

        images_dir = method + '-' + str(time_step / 60) + 'min-' + str(num_steps) + 'steps'
        renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
        renderer.delay = 25
#         renderer.add_grid(curr.grid)
        mod.outputters += renderer


        netCDF_fn = os.path.join(base_dir, images_dir + '.nc')
        mod.outputters += NetCDFOutput(netCDF_fn, which_data='all')
        models.append(mod)

    print 'returning models'
    return models
示例#13
0
    def test_full_run(self):
        'just check that all data arrays work correctly'
        s = Spill(InitElemsFromFile(testdata['nc']['nc_output']))
        model = Model(start_time=s.release_time,
                      time_step=self.time_step.total_seconds(),
                      duration=timedelta(days=2))
        model.spills += s
        model.movers += RandomMover()

        # setup model run
        for step in model:
            if step['step_num'] == 0:
                continue
            for sc in model.spills.items():
                for key in sc.data_arrays.keys():
                    # following keys will not change with run
                    if key in ('status_codes', 'mass', 'init_mass', 'id',
                               'spill_num',
                               'last_water_positions'):  # all water map
                        assert np.all(sc[key] == s.release._init_data[key])
示例#14
0
def make_model(images_dir):
    print 'initializing the model'

    timestep = timedelta(minutes=15)  # this is already default
    start_time = datetime(2012, 9, 15, 12, 0)
    model = Model(timestep, start_time)

    # timeseries for wind data. The value is interpolated if time is between
    # the given datapoints
    series = np.zeros((4, ), dtype=datetime_value_2d)
    series[:] = [(start_time, (5, 180)),
                 (start_time + timedelta(hours=6), (10, 180)),
                 (start_time + timedelta(hours=12), (12, 180)),
                 (start_time + timedelta(hours=18), (8, 180))]
    wind = Wind(timeseries=series, units='m/s')
    model.environment += wind

    # include a wind mover and random diffusion
    print 'adding movers'
    model.movers += [WindMover(wind), RandomMover()]

    # add particles
    print 'adding particles'
    release = release_from_splot_data(start_time,
                                      'GL.2013267._LE_WHOLELAKE.txt')
    model.spills += Spill(release)

    # output data as png images and in netcdf format
    print 'adding outputters'
    netcdf_file = os.path.join(base_dir, 'script_example.nc')

    # ignore renderer for now
    model.outputters += [
        Renderer(images_dir=images_dir,
                 size=(800, 800),
                 projection_class=GeoProjection),
        NetCDFOutput(netcdf_file)
    ]

    print 'model complete'
    return model
示例#15
0
def test_random_mover():
    """
    Make sure diffusion doesn't move the LEs marked as on_tideflat
    """
    start_time = datetime(2012, 11, 10, 0)
    sc = sample_sc_release(10, (0.0, 0.0, 0.0), start_time)
    D = 100000

    rand = RandomMover(diffusion_coef=D)

    model_time = start_time
    time_step = 1000  # quite random

    sc.release_elements(time_step, model_time)

    print "status codes"
    print sc['status_codes']

    delta = run_one_timestep(sc, rand, time_step, model_time)

    print "delta:", delta

    assert np.all(delta[:, 0] != 0.0)
    assert np.all(delta[:, 1] != 0.0)
    assert np.all(delta[:, 2] == 0.0)

    # now set the on_tideflat code on half the elements
    sc['status_codes'][5:] = oil_status.on_tideflat

    delta = run_one_timestep(sc, rand, time_step, model_time)

    # only the first 5 should move
    assert np.all(delta[:5, 0] != 0.0)
    assert np.all(delta[:5, 1] != 0.0)

    assert np.all(delta[5:, 0] == 0.0)
    assert np.all(delta[5:, 1] == 0.0)

    # no change to depth
    assert np.all(delta[:, 2] == 0.0)
示例#16
0
def test_serialize_deserialize(json_, output_filename):
    '''
    todo: this behaves in unexpected ways when using the 'model' testfixture.
    For now, define a model in here for the testing - not sure where the
    problem lies
    '''
    s_time = datetime(2014, 1, 1, 1, 1, 1)
    model = Model(start_time=s_time)
    model.spills += point_line_release_spill(num_elements=5,
                                             start_position=(0, 0, 0),
                                             release_time=model.start_time)

    o_put = NetCDFOutput(output_filename)
    model.outputters += o_put
    model.movers += RandomMover(diffusion_coef=100000)

    # ==========================================================================
    # o_put = [model.outputters[outputter.id]
    #          for outputter in model.outputters
    #          if isinstance(outputter, NetCDFOutput)][0]
    # ==========================================================================

    model.rewind()
    print "step: {0}, _start_idx: {1}".format(-1, o_put._start_idx)
    for ix in range(2):
        model.step()
        print "step: {0}, _start_idx: {1}".format(ix, o_put._start_idx)

    dict_ = o_put.deserialize(o_put.serialize(json_))
    o_put2 = NetCDFOutput.new_from_dict(dict_)
    if json_ == 'save':
        assert o_put == o_put2
    else:
        # _start_idx and _middle_of_run should not match
        assert o_put._start_idx != o_put2._start_idx
        assert o_put._middle_of_run != o_put2._middle_of_run
        assert o_put != o_put2

    if os.path.exists(o_put.netcdf_filename):
        print '\n{0} exists'.format(o_put.netcdf_filename)
示例#17
0
def test_variance1(start_loc, time_step):
    """
    After a few timesteps the variance of the particle positions should be
    similar to the computed value: var = Dt
    """

    num_le = 1000
    start_time = datetime.datetime(2012, 11, 10, 0)
    sc = sample_sc_release(num_le, start_loc, start_time)
    D = 100000
    num_steps = 10

    rand = RandomMover(diffusion_coef=D)

    model_time = start_time
    for i in range(num_steps):
        model_time += datetime.timedelta(seconds=time_step)
        sc.release_elements(time_step, model_time)
        rand.prepare_for_model_step(sc, time_step, model_time)
        delta = rand.get_move(sc, time_step, model_time)

        # print "delta:", delta

        sc['positions'] += delta

        # print sc['positions']

    # compute the variances:
    # convert to meters

    pos = FlatEarthProjection.lonlat_to_meters(sc['positions'], start_loc)
    var = np.var(pos, axis=0)

    # D converted to meters^s/s

    expected = 2.0 * (D * 1e-4) * num_steps * time_step

    assert np.allclose(var, (expected, expected, 0.), rtol=0.1)
示例#18
0
def make_model():
    duration_hrs = 48
    time_step = 900
    num_steps = duration_hrs * 3600 / time_step
    mod = Model(start_time=t,
                duration=timedelta(hours=duration_hrs),
                time_step=time_step)

    spill = point_line_release_spill(num_elements=1000,
                                     amount=1600,
                                     units='kg',
                                     start_position=(0.5, 0.5, 0.0),
                                     release_time=t,
                                     end_release_time=t + timedelta(hours=4))
    mod.spills += spill

    method = 'Trapezoid'
    images_dir = method + '-' + str(
        time_step / 60) + 'min-' + str(num_steps) + 'steps'
    renderer = Renderer(output_dir=images_dir, image_size=(800, 800))
    renderer.delay = 5
    renderer.add_grid(g)
    renderer.add_vec_prop(vg)

    renderer.graticule.set_max_lines(max_lines=0)
    mod.outputters += renderer

    mod.movers += PyCurrentMover(current=vg,
                                 default_num_method=method,
                                 extrapolate=True)
    mod.movers += RandomMover(diffusion_coef=10)

    netCDF_fn = os.path.join(base_dir, images_dir + '.nc')
    mod.outputters += NetCDFOutput(netCDF_fn, which_data='all')

    return mod
示例#19
0
def make_modelF(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td, dif_coef,temp_water):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration, uncertain=uncertain)
    print 'adding the map:'
    mapfile = get_datafile(os.path.join(data_path, map_path, map))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'

    if save_nc:
        scripting.remove_netcdf(output_path+'/'+'output.nc')
        nc_outputter = NetCDFOutput(output_path+'/'+'output.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter

    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    # wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=dif_coef)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)#, substance='AD04001', amount=9600000, units='kg')

    if weatherers:
        print 'adding weatherers'
        water = Water(temp_water)
        wind = constant_wind(0.0001, 0, 'knots')
        waves = Waves(wind, water)
        model.weatherers += Evaporation(water, wind)
    # model.weatherers += Emulsification(waves)
        model.weatherers += NaturalDispersion(waves, water)
    return model
示例#20
0
def main(RootDir, Data_Dir, StartSite, RunSite, NumStarts, RunStarts,
         ReleaseLength, TrajectoryRunLength, StartTimeFiles, TrajectoriesPath,
         NumLEs, MapFileName, refloat, current_files, wind_files,
         diffusion_coef, model_timestep, windage_range, windage_persist,
         OutputTimestep):

    timingRecord = open(os.path.join(RootDir, "timing.txt"), "w")
    count = len(StartTimeFiles) * len(RunStarts)
    timingRecord.write("This file tracks the time to process " + str(count) +
                       " gnome runs")

    # model timing
    release_duration = timedelta(hours=ReleaseLength)
    run_time = timedelta(hours=TrajectoryRunLength)

    # initiate model
    model = Model(duration=run_time, time_step=model_timestep, uncertain=False)

    # determine boundary for model
    print "Adding the map:", MapFileName
    mapfile = get_datafile(os.path.join(Data_Dir, MapFileName))
    # model.map = MapFromBNA(mapfile, refloat_halflife=refloat) no, model map needs to inclde mudflats. later

    # loop through seasons
    for Season in StartTimeFiles:
        timer1 = datetime.now()

        SeasonName = Season[1]
        start_times = open(Season[0], 'r').readlines()[:NumStarts]
        SeasonTrajDir = os.path.join(RootDir, TrajectoriesPath, SeasonName)
        if not os.path.isdir(SeasonTrajDir):
            print "Creating directory: ", SeasonTrajDir
            make_dir(SeasonTrajDir)
        print "  Season:", SeasonName

        # get and parse start times in this season
        start_dt = []
        for start_time in start_times:
            start_time = [int(i) for i in start_time.split(',')]
            start_time = datetime(start_time[0], start_time[1], start_time[2],
                                  start_time[3], start_time[4])
            start_dt.append(start_time)

        ## loop through start times
        for time_idx in RunStarts:
            timer2 = datetime.now()

            gc.collect()
            model.movers.clear()

            ## set the start location
            start_time = start_dt[time_idx]
            end_time = start_time + run_time
            model.start_time = start_time
            print "  ", start_time, "to", end_time

            ## get a list of the only data files needed for the start time (less data used)
            ## note: requires data files in year increments
            #Todo: needs fixing before real run
            years = range(start_time.year, end_time.year + 1)
            years = [str(i) for i in years]
            wind = [s for s in wind_files if any(xs in s for xs in years)]
            current = [
                s for s in current_files if any(xs in s for xs in years)
            ]

            #Todo: add mudflats. Does it work like this?
            topology = {'node_lon': 'x', 'node_lat': 'y'}

            ## add wind movers
            w_mover = PyWindMover(filename=wind)
            model.movers += w_mover

            ## add current movers
            current_mover = gs.GridCurrent.from_netCDF(current,
                                                       grid_topology=topology)
            c_mover = PyCurrentMover(current=current_mover)
            model.movers += c_mover

            tideflat = Matroos_Mudflats(current, grid_topology=topology)
            land_map = gs.MapFromBNA(mapfile)
            model.map = TideflatMap(land_map, tideflat)

            ## add diffusion
            model.movers += RandomMover(diffusion_coef=diffusion_coef)

            ## loop through start locations
            timer3 = datetime.now()

            #Todo: can it deal with the test.location.txt file??
            start_position = [float(i) for i in StartSite.split(',')]

            OutDir = os.path.join(RootDir, TrajectoriesPath, SeasonName,
                                  'pos_%03i' % (RunSite + 1))
            make_dir(OutDir)

            print "    ", RunSite, time_idx
            print "    Running: start time:", start_time,
            print "at start location:", start_position

            ## set the spill to the location
            spill = surface_point_line_spill(
                num_elements=NumLEs,
                start_position=(start_position[0], start_position[1], 0.0),
                release_time=start_time,
                end_release_time=start_time + release_duration,
                windage_range=windage_range,
                windage_persist=windage_persist)

            # print "adding netcdf output"
            netcdf_output_file = os.path.join(
                OutDir,
                'pos_%03i-t%03i_%08i.nc' %
                (RunSite + 1, time_idx, int(start_time.strftime('%y%m%d%H'))),
            )
            model.outputters.clear()
            model.outputters += NetCDFOutput(
                netcdf_output_file,
                output_timestep=timedelta(hours=OutputTimestep))

            model.spills.clear()
            model.spills += spill

            model.full_run(rewind=True)

            timer4 = datetime.now()
            diff = round((timer4 - timer3).total_seconds() / 60, 2)
            timingRecord.write("\t\t" + str(RunSite) + " took " + str(diff) +
                               " minutes to complete")
        diff = round((timer4 - timer1).total_seconds() / 3600, 2)
        count = len(RunStarts)
        timingRecord.write("\t" + str(SeasonName) + " took " + str(diff) +
                           " hours to finish " + str(count) + " Gnome runs")
    #OutDir.close
    timingRecord.close
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 1, 1)
    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=47),
                  time_step=300)

    mapfile = get_datafile(os.path.join(base_dir, 'columbia_river.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(600, 1200))
    renderer.delay = 15
    #     renderer.viewport = ((-123.35, 45.6), (-122.68, 46.13))
    #     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = continuous_release_spill(initial_elements=10000,
                                      num_elements=400,
                                      start_position=(-122.625, 45.609, 0.0),
                                      release_time=start_time,
                                      end_position=(-122.6, 45.605, 0.0),
                                      end_release_time=start_time +
                                      timedelta(seconds=36000))

    model.spills += spill1

    print 'adding a RandomMover:'
    #     model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'
    series = []
    for i in [(1, (5, 90)), (7, (5, 180)), (13, (5, 270)), (19, (5, 0)),
              (25, (5, 90))]:
        series.append((start_time + timedelta(hours=i[0]), i[1]))

    wind1 = WindTS.constant_wind('wind1', 0.5, 0, 'm/s')
    wind2 = WindTS(timeseries=series, units='knots', extrapolate=True)

    #     wind = Wind(timeseries=series, units='knots')

    model.movers += PyWindMover(wind=wind1)

    print 'adding a current mover:'

    #     url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/jcwarner/Projects/Sandy/triple_nest/00_dir_NYB05.ncml')
    #     test = GridCurrent.from_netCDF(name='gc1', filename=url)

    curr_file = get_datafile('COOPSu_CREOFS24.nc')
    curr = GridCurrent.from_netCDF(
        name='gc2',
        filename=curr_file,
    )

    c_mover = PyGridCurrentMover(curr,
                                 extrapolate=True,
                                 default_num_method='Trapezoid')

    #     renderer.add_grid(curr.grid)
    #     renderer.add_vec_prop(curr)
    model.movers += c_mover

    print 'adding a random mover'
    model.movers += RandomMover(diffusion_coef=1000)

    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model
示例#22
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:
    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, './MassBayMap.bna'))
    gnome_map = MapFromBNA(
        mapfile,
        refloat_halflife=1,  # hours
        raster_size=2048 * 2048  # about 4 MB
    )

    renderer = Renderer(
        mapfile,
        images_dir,
        image_size=(800, 800),
    )

    print 'initializing the model'
    start_time = datetime(2016, 3, 9, 15)

    # 1 hour in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=3600,
                  start_time=start_time,
                  duration=timedelta(days=6),
                  map=gnome_map,
                  uncertain=True)

    print 'adding outputters'
    model.outputters += renderer

    # netcdf_file = os.path.join(base_dir, 'script_boston.nc')
    # scripting.remove_netcdf(netcdf_file)
    # model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    # model.outputters += KMZOutput(os.path.join(base_dir, 'script_boston.kmz'))

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 180))
    series[1] = (start_time + timedelta(hours=18), (5, 180))
    w = Wind(filename=os.path.join(base_dir, '22NM_WNW_PortAngelesWA.nws'))
    w_mover = WindMover(w)
    model.movers += w_mover
    model.environment += w_mover.wind

    # print 'adding a cats shio mover:'

    # curr_file = get_datafile(os.path.join(base_dir, r"./EbbTides.cur"))
    # tide_file = get_datafile(os.path.join(base_dir, r"./EbbTidesShio.txt"))

    # c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # # this is the value in the file (default)
    # c_mover.scale_refpoint = (-70.8875, 42.321333)
    # c_mover.scale = True
    # c_mover.scale_value = -1

    # model.movers += c_mover

    # # TODO: cannot add this till environment base class is created
    # model.environment += c_mover.tide

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=100,
                                     start_position=(-70.911432, 42.369142,
                                                     0.0),
                                     release_time=start_time,
                                     end_release_time=end_time)

    model.spills += spill

    return model
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 23, 0, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(output_dir=images_dir,
                        image_size=(1024, 768),
                        output_timestep=timedelta(hours=1),
                        )
    renderer.viewport = ((196.14, 71.89), (196.18, 71.93))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'script_arctic_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     # output most of the data associated with the elements
                                     output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=500)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomMover3D(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding a circular current and eastward current'
    fn = 'hycom_glb_regp17_2016092300_subset.nc'
    fn_ice = 'hycom-cice_ARCu0.08_046_2016092300_subset.nc'
    iconc = IceConcentration.from_netCDF(filename=fn_ice)
    ivel = IceVelocity.from_netCDF(filename=fn_ice, grid = iconc.grid)
    ic = IceAwareCurrent.from_netCDF(ice_concentration = iconc, ice_velocity= ivel, filename=fn)

    model.movers += PyCurrentMover(current = ic)
    model.movers += SimpleMover(velocity=(0., 0., 0.))
    model.movers += constant_wind_mover(20, 315, units='knots')

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(release_time=start_time,
                                        start_position=(196.16, 71.91, 40.0),
                                        num_elements=1000,
                                        end_release_time=start_time + timedelta(days=1),
                                        name='TAMOC plume',
                                        TAMOC_interval=None,  # how often to re-run TAMOC
                                        )

    model.spills[0].data_sources['currents'] = ic

    return model
示例#24
0
from gnome.movers import RandomMover


l_spills = [point_line_release_spill(10, (0, 0, 0),
                                     datetime.now().replace(microsecond=0),
                                     name='sp1'),
            point_line_release_spill(15, (0, 0, 0),
                                     datetime.now().replace(microsecond=0),
                                     name='sp2'),
            point_line_release_spill(20, (0, 0, 0),
                                     datetime.now().replace(microsecond=0),
                                     name='sp3'),
            point_line_release_spill(5, (0, 0, 0),
                                     datetime.now().replace(microsecond=0),
                                     name='sp4')]
l_mv = [SimpleMover(velocity=(1, 2, 3)), RandomMover()]


def define_mdl(test=0):
    '''
    WebAPI will update/replace nested objects so do that for the test as well
    Setup some test cases:

    0 - empty model w/ no changes
    1 - model with l_mv and l_spills but no changes
    2 - empty model but add l_mv and l_spills to json_ so it changed
    3 - add l_mv and l_spills to model, then delete some elements and update
    via json
    '''
    def get_json(mdl):
        json_ = mdl.serialize()
示例#25
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2014, 6, 9, 0, 0)
    mapfile = get_datafile(os.path.join(base_dir, 'PassamaquoddyMap.bna'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=24), time_step=360,
                  map=gnome_map, uncertain=False, cache_enabled=True)

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        # output_timestep=timedelta(hours=1),
                        draw_ontop='uncertain')
    renderer.viewport = ((-67.15, 45.), (-66.9, 45.2))

    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_passamaquoddy.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-66.991344, 45.059316,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=30000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 90))
    series[1] = (start_time + timedelta(hours=18), (5, 180))
    series[2] = (start_time + timedelta(hours=30), (5, 135))
    series[3] = (start_time + timedelta(hours=42), (5, 180))
    series[4] = (start_time + timedelta(hours=54), (5, 225))

    wind = Wind(timeseries=series, units='m/s')
    model.movers += WindMover(wind)

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'PQBayCur.nc4'))
    topology_file = get_datafile(os.path.join(base_dir, 'PassamaquoddyTOP.dat')
                                 )
    tide_file = get_datafile(os.path.join(base_dir, 'EstesHead.txt'))

    cc_mover = CurrentCycleMover(curr_file, topology_file,
                                 tide=Tide(tide_file))

    model.movers += cc_mover
    model.environment += cc_mover.tide

    print 'viewport is:', [o.viewport
                           for o in model.outputters
                           if isinstance(o, Renderer)]

    return model
示例#26
0
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, 'DelawareRiverMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    renderer = Renderer(mapfile, images_dir, image_size=(800, 800),
                        projection_class=GeoProjection)

    print 'initializing the model'
    start_time = datetime(2012, 8, 20, 13, 0)

    # 15 minutes in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=900, start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map, uncertain=False)

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_delaware_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    # wind_file = get_datafile(os.path.join(base_dir, 'ConstantWind.WND'))
    # wind = Wind(filename=wind_file)

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 270))
    series[1] = (start_time + timedelta(hours=25), (5, 270))

    wind = Wind(timeseries=series, units='m/s')

    # w_mover = WindMover(Wind(timeseries=series, units='knots'))
    w_mover = WindMover(wind)
    model.movers += w_mover

    print 'adding a cats shio mover:'

    curr_file = get_datafile(os.path.join(base_dir, 'FloodTides.cur'))
    tide_file = get_datafile(os.path.join(base_dir, 'FloodTidesShio.txt'))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # this is the value in the file (default)
    c_mover.scale_refpoint = (-75.081667, 38.7995)
    c_mover.scale = True
    c_mover.scale_value = 1

    model.movers += c_mover

    # TODO: cannot add this till environment base class is created
    model.environment += c_mover.tide

    print 'adding a cats mover:'

    curr_file = get_datafile(os.path.join(base_dir, 'Offshore.cur'))
    c_mover = CatsMover(curr_file)

    # but do need to scale (based on river stage)

    c_mover.scale = True
    c_mover.scale_refpoint = (-74.7483333, 38.898333)
    c_mover.scale_value = .03
    model.movers += c_mover
    #
    # these are from windows they don't match Mac values...
    # pat1Angle 315;
    # pat1Speed 30; pat1SpeedUnits knots;
    # pat1ScaleToValue 0.314426
    #
    # pat2Angle 225;
    # pat2Speed 30; pat2SpeedUnits knots;
    # pat2ScaleToValue 0.032882
    # scaleBy WindStress

    print 'adding a component mover:'

    # if only using one current pattern
    # comp_mover = ComponentMover(curr_file1, None, wind)
    #
    # todo: following is not working when model is saved out - fix
    # comp_mover = ComponentMover(curr_file1, curr_file2,
    #                             Wind(timeseries=series, units='m/s'))
    # comp_mover = ComponentMover(curr_file1, curr_file2,
    #                             wind=Wind(filename=wind_file))

    curr_file1 = get_datafile(os.path.join(base_dir, 'NW30ktwinds.cur'))
    curr_file2 = get_datafile(os.path.join(base_dir, 'SW30ktwinds.cur'))
    comp_mover = ComponentMover(curr_file1, curr_file2, wind)

    comp_mover.scale_refpoint = (-75.263166, 39.1428333)

    comp_mover.pat1_angle = 315
    comp_mover.pat1_speed = 30
    comp_mover.pat1_speed_units = 1
    # comp_mover.pat1ScaleToValue = .314426
    comp_mover.pat1_scale_to_value = .502035

    comp_mover.pat2_angle = 225
    comp_mover.pat2_speed = 30
    comp_mover.pat2_speed_units = 1
    # comp_mover.pat2ScaleToValue = .032882
    comp_mover.pat2_scale_to_value = .021869

    model.movers += comp_mover

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=1000,
                                     release_time=start_time,
                                     # end_release_time=end_time,
                                     start_position=(-75.262319,
                                                     39.142987, 0.0),
                                     )

    model.spills += spill

    return model
示例#27
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(
        output_dir=images_dir,
        # size=(800, 600),
        output_timestep=timedelta(hours=1),
        draw_ontop='uncertain')
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     output_timestep=timedelta(hours=2))

    print 'adding two spills'
    # Break the spill into two spills, first with the larger droplets
    # and second with the smaller droplets.
    # Split the total spill volume (100 m^3) to have most
    # in the larger droplet spill.
    # Smaller droplets start at a lower depth than larger

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             min_=.0002)  # 200 micron min
    end_time = start_time + timedelta(hours=24)
    # spill = point_line_release_spill(num_elements=10,
    #                                  amount=90,  # default volume_units=m^3
    #                                  units='m^3',
    #                                  start_position=(-76.126872, 37.680952,
    #                                                  1700),
    #                                  release_time=start_time,
    #                                  end_release_time=end_time,
    #                                  element_type=plume(distribution=wd,
    #                                                     density=600)
    #                                  )

    spill = subsurface_plume_spill(
        num_elements=10,
        start_position=(-76.126872, 37.680952, 1700),
        release_time=start_time,
        distribution=wd,
        amount=90,  # default volume_units=m^3
        units='m^3',
        end_release_time=end_time,
        density=600)

    model.spills += spill

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             max_=.0002)  # 200 micron max
    spill = point_line_release_spill(
        num_elements=10,
        amount=90,
        units='m^3',
        start_position=(-76.126872, 37.680952, 1800),
        release_time=start_time,
        element_type=plume(distribution=wd, substance_name='oil_crude'))
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a RiseVelocityMover:'
    model.movers += RiseVelocityMover()

    print 'adding a RandomVerticalMover:'
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    # print 'adding a wind mover:'

    # series = np.zeros((2, ), dtype=gnome.basic_types.datetime_value_2d)
    # series[0] = (start_time, (30, 90))
    # series[1] = (start_time + timedelta(hours=23), (30, 90))

    # wind = Wind(timeseries=series, units='knot')
    #
    # default is .4 radians
    # w_mover = gnome.movers.WindMover(wind, uncertain_angle_scale=0)
    #
    # model.movers += w_mover

    print 'adding a simple mover:'
    s_mover = SimpleMover(velocity=(0.0, -.3, 0.0))
    model.movers += s_mover

    return model
示例#28
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2013, 5, 18, 0)

    model = Model(start_time=start_time,
                  duration=timedelta(days=8),
                  time_step=4 * 3600,
                  uncertain=False)

    mapfile = get_datafile(os.path.join(base_dir, 'mariana_island.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    #
    # Add the outputters -- render to images, and save out as netCDF
    #

    print 'adding renderer'
    model.outputters += Renderer(
        mapfile,
        images_dir,
        size=(800, 600),
    )
    #                                 draw_back_to_fore=True)

    # print "adding netcdf output"
    # netcdf_output_file = os.path.join(base_dir,'mariana_output.nc')
    # scripting.remove_netcdf(netcdf_output_file)
    # model.outputters += NetCDFOutput(netcdf_output_file, which_data='all')

    #
    # Set up the movers:
    #

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a simple wind mover:'
    model.movers += constant_wind_mover(5, 315, units='m/s')

    print 'adding a current mover:'

    # # this is HYCOM currents
    curr_file = get_datafile(os.path.join(base_dir, 'HYCOM.nc'))
    model.movers += GridCurrentMover(curr_file,
                                     num_method=numerical_methods.euler)

    # #
    # # Add some spills (sources of elements)
    # #

    print 'adding four spill'
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.25, 15.0,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(146.25, 15.0,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.75, 15.25,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.75, 14.75,
                                                             0.0),
                                             release_time=start_time)

    return model
示例#29
0
def make_model(uncertain=False, mode='gnome'):
    '''
    Create a model from the data in sample_data/boston_data
    It contains:
      - the GeoProjection
      - wind mover
      - random mover
      - cats shio mover
      - cats ossm mover
      - plain cats mover
    '''
    start_time = datetime(2013, 2, 13, 9, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=timedelta(minutes=30).total_seconds(),
                  uncertain=uncertain,
                  map=MapFromBNA(testdata['boston_data']['map'],
                                 refloat_halflife=1),
                  mode=mode)

    print 'adding a spill'
    start_position = (144.664166, 13.441944, 0.0)
    end_release_time = start_time + timedelta(hours=6)
    spill_amount = 1000.0
    spill_units = 'kg'
    model.spills += point_line_release_spill(num_elements=1000,
                                             start_position=start_position,
                                             release_time=start_time,
                                             end_release_time=end_release_time,
                                             amount=spill_amount,
                                             units=spill_units,
                                             substance=test_oil)
    spill = model.spills[-1]
    spill_volume = spill.get_mass() / spill.substance.density_at_temp()
    # need a scenario for SimpleMover
    # model.movers += SimpleMover(velocity=(1.0, -1.0, 0.0))

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 180))
    series[1] = (start_time + timedelta(hours=18), (5, 180))

    w_mover = WindMover(Wind(timeseries=series, units='m/s'))

    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a cats shio mover:'

    c_mover = CatsMover(testdata['boston_data']['cats_curr2'],
                        tide=Tide(testdata['boston_data']['cats_shio']))

    # c_mover.scale_refpoint should automatically get set from tide object
    c_mover.scale = True  # default value
    c_mover.scale_value = -1

    # tide object automatically gets added by model
    model.movers += c_mover

    print 'adding a cats ossm mover:'

    c_mover = CatsMover(testdata['boston_data']['cats_curr2'],
                        tide=Tide(testdata['boston_data']['cats_ossm']))

    c_mover.scale = True  # but do need to scale (based on river stage)
    c_mover.scale_refpoint = (-70.65, 42.58333, 0.0)
    c_mover.scale_value = 1.

    print 'adding a cats mover:'

    c_mover = CatsMover(testdata['boston_data']['cats_curr3'])
    c_mover.scale = True  # but do need to scale (based on river stage)
    c_mover.scale_refpoint = (-70.78333, 42.39333, 0.0)

    # the scale factor is 0 if user inputs no sewage outfall effects
    c_mover.scale_value = .04
    model.movers += c_mover

    # TODO: seg faulting for component mover - comment test for now
    # print "adding a component mover:"
    # comp_mover = ComponentMover(testdata['boston_data']['component_curr1'],
    #                             testdata['boston_data']['component_curr2'],
    #                             w_mover.wind)
    # TODO: callback did not work correctly below - fix!
    # comp_mover = ComponentMover(component_file1,
    #                             component_file2,
    #                             Wind(timeseries=series, units='m/s'))

    # comp_mover.ref_point = (-70.855, 42.275)
    # comp_mover.pat1_angle = 315
    # comp_mover.pat1_speed = 19.44
    # comp_mover.pat1_speed_units = 1
    # comp_mover.pat1ScaleToValue = .138855
    # comp_mover.pat2_angle = 225
    # comp_mover.pat2_speed = 19.44
    # comp_mover.pat2_speed_units = 1
    # comp_mover.pat2ScaleToValue = .05121

    # model.movers += comp_mover

    print 'adding a Weatherer'
    model.environment += Water(311.15)
    skim_start = start_time + timedelta(hours=3)
    model.weatherers += [
        Evaporation(),
        Skimmer(spill_amount * .5,
                spill_units,
                efficiency=.3,
                active_range=(skim_start, skim_start + timedelta(hours=2))),
        Burn(0.2 * spill_volume,
             1.0, (skim_start, InfDateTime('inf')),
             efficiency=0.9)
    ]

    model.outputters += \
        CurrentJsonOutput(model.find_by_attr('_ref_as', 'current_movers',
                                             model.movers, allitems=True))

    return model
示例#30
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2012, 9, 15, 12, 0)
    mapfile = get_datafile(os.path.join(base_dir, './LongIslandSoundMap.BNA'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=48), time_step=3600,
                  map=gnome_map, uncertain=False, cache_enabled=False)

    print 'adding a spill'
    et = floating_weathering(substance='FUEL OIL NO.6')
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-72.419992,
                                                     41.202120, 0.0),
                                     release_time=start_time,
                                     amount=1000,
                                     units='kg',
                                     element_type=et)
    spill.amount_uncertainty_scale = 1.0
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=500000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (10, 45))
    series[1] = (start_time + timedelta(hours=18), (10, 90))
    series[2] = (start_time + timedelta(hours=30), (10, 135))
    series[3] = (start_time + timedelta(hours=42), (10, 180))
    series[4] = (start_time + timedelta(hours=54), (10, 225))

    wind = Wind(timeseries=series, units='m/s',
                speed_uncertainty_scale=0.5)
    model.movers += WindMover(wind)

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, r"./LI_tidesWAC.CUR"))
    tide_file = get_datafile(os.path.join(base_dir, r"./CLISShio.txt"))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))
    model.movers += c_mover

    model.environment += c_mover.tide

    print 'adding Weatherers'
    water_env = Water(311.15)
    model.environment += water_env
    model.weatherers += [Evaporation(water_env, wind),
                         Dispersion(),
                         Burn(),
                         Skimmer()]

    print 'adding outputters'
    model.outputters += WeatheringOutput()

    return model