示例#1
0
    def __init__(self, mode,
            freq_absolute=100.0,
            freq_relative=None,
            freq_linked_to_device=False,
            audio_destination=None,
            device_name=None,
            audio_gain=-6,
            audio_pan=0,
            audio_channels=0,
            context=None):
        assert audio_channels == 1 or audio_channels == 2
        assert audio_destination is not None
        assert device_name is not None
        gr.hier_block2.__init__(
            # str() because insists on non-unicode
            self, str('%s receiver' % (mode,)),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(audio_channels, audio_channels, gr.sizeof_float * 1),
        )
        
        if lookup_mode(mode) is None:
            # TODO: communicate back to client if applicable
            log.msg('Unknown mode %r in Receiver(); using AM' % (mode,))
            mode = 'AM'
        
        # Provided by caller
        self.context = context
        self.__audio_channels = audio_channels

        # cached info from device
        self.__device_name = device_name
        
        # Simple state
        self.mode = mode
        self.audio_gain = audio_gain
        self.audio_pan = min(1, max(-1, audio_pan))
        self.__audio_destination = audio_destination
        
        # Receive frequency.
        self.__freq_linked_to_device = bool(freq_linked_to_device)
        if self.__freq_linked_to_device and freq_relative is not None:
            self.__freq_relative = float(freq_relative)
            self.__freq_absolute = self.__freq_relative + self.__get_device().get_freq()
        else:
            self.__freq_absolute = float(freq_absolute)
            self.__freq_relative = self.__freq_absolute - self.__get_device().get_freq()
        
        # Blocks
        self.__rotator = blocks.rotator_cc()
        self.__demodulator = self.__make_demodulator(mode, {})
        self.__update_demodulator_info()
        self.__audio_gain_blocks = [blocks.multiply_const_ff(0.0) for _ in xrange(self.__audio_channels)]
        self.probe_audio = analog.probe_avg_mag_sqrd_f(0, alpha=10.0 / 44100)  # TODO adapt to output audio rate
        
        # Other internals
        self.__last_output_type = None
        
        self.__update_rotator()  # initialize rotator, also in case of __demod_tunable
        self.__update_audio_gain()
        self.__do_connect(reason=u'initialization')
示例#2
0
    def __init__(self, mode,
            freq_absolute=100.0,
            freq_relative=None,
            freq_linked_to_device=False,
            audio_destination=None,
            device_name=None,
            audio_gain=-6,
            audio_pan=0,
            audio_channels=0,
            context=None):
        assert audio_channels == 1 or audio_channels == 2
        assert audio_destination is not None
        assert device_name is not None
        gr.hier_block2.__init__(
            # str() because insists on non-unicode
            self, str('%s receiver' % (mode,)),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(audio_channels, audio_channels, gr.sizeof_float * 1),
        )
        
        if lookup_mode(mode) is None:
            # TODO: communicate back to client if applicable
            log.msg('Unknown mode %r in Receiver(); using AM' % (mode,))
            mode = 'AM'
        
        # Provided by caller
        self.context = context
        self.__audio_channels = audio_channels

        # cached info from device
        self.__device_name = device_name
        
        # Simple state
        self.mode = mode
        self.audio_gain = audio_gain
        self.audio_pan = min(1, max(-1, audio_pan))
        self.__audio_destination = audio_destination
        
        # Receive frequency.
        self.__freq_linked_to_device = bool(freq_linked_to_device)
        if self.__freq_linked_to_device and freq_relative is not None:
            self.__freq_relative = float(freq_relative)
            self.__freq_absolute = self.__freq_relative + self.__get_device().get_freq()
        else:
            self.__freq_absolute = float(freq_absolute)
            self.__freq_relative = self.__freq_absolute - self.__get_device().get_freq()
        
        # Blocks
        self.__rotator = blocks.rotator_cc()
        self.__demodulator = self.__make_demodulator(mode, {})
        self.__update_demodulator_info()
        self.__audio_gain_blocks = [blocks.multiply_const_ff(0.0) for _ in xrange(self.__audio_channels)]
        self.probe_audio = analog.probe_avg_mag_sqrd_f(0, alpha=10.0 / 44100)  # TODO adapt to output audio rate
        
        # Other internals
        self.__last_output_type = None
        
        self.__update_rotator()  # initialize rotator, also in case of __demod_tunable
        self.__update_audio_gain()
        self.__do_connect(reason=u'initialization')
示例#3
0
    def __init__(self,
                 mode,
                 input_rate=0,
                 input_center_freq=0,
                 rec_freq=100.0,
                 audio_destination=None,
                 audio_gain=-6,
                 audio_pan=0,
                 audio_channels=0,
                 context=None):
        assert input_rate > 0
        assert audio_channels == 1 or audio_channels == 2
        assert audio_destination is not None
        gr.hier_block2.__init__(
            # str() because insists on non-unicode
            self,
            str('%s receiver' % (mode, )),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(audio_channels, audio_channels,
                            gr.sizeof_float * 1),
        )

        if lookup_mode(mode) is None:
            # TODO: communicate back to client if applicable
            log.msg('Unknown mode %r in Receiver(); using AM' % (mode, ))
            mode = 'AM'

        # Provided by caller
        self.context = context
        self.input_rate = input_rate
        self.input_center_freq = input_center_freq
        self.__audio_channels = audio_channels

        # Simple state
        self.mode = mode
        self.rec_freq = rec_freq
        self.audio_gain = audio_gain
        self.audio_pan = min(1, max(-1, audio_pan))
        self.__audio_destination = audio_destination

        # Blocks
        self.__rotator = blocks.rotator_cc()
        self.demodulator = self.__make_demodulator(mode, {})
        self.__update_demodulator_info()
        self.__audio_gain_blocks = [
            blocks.multiply_const_ff(0.0)
            for _ in xrange(self.__audio_channels)
        ]
        self.probe_audio = analog.probe_avg_mag_sqrd_f(
            0, alpha=10.0 / 44100)  # TODO adapt to output audio rate

        # Other internals
        self.__last_output_type = None

        self.__update_rotator(
        )  # initialize rotator, also in case of __demod_tunable
        self.__update_audio_gain()
        self.__do_connect()
    def __init__(self, ebno_db=0, min_errors=100, samp_per_sym=1):
        gr.top_block.__init__(self, "BER 4FSK ")

        ##################################################
        # Parameters
        ##################################################
        self.ebno_db = ebno_db
        self.min_errors = min_errors
        self.samp_per_sym = samp_per_sym

        ##################################################
        # Variables
        ##################################################
        self.symb_rate = symb_rate = 4800
        self.bits_per_sym = bits_per_sym = 1
        self.bit_rate = bit_rate = float(symb_rate)*bits_per_sym
        self.average_power = average_power = 1.0
        self.ebno = ebno = 10**(ebno_db/10.0)
        self.eb = eb = average_power/bit_rate
        self.samp_rate = samp_rate = symb_rate*samp_per_sym
        self.no = no = eb/ebno
        self.noise_variance = noise_variance = no*samp_rate/2.0

        ##################################################
        # Blocks
        ##################################################
        self.sample_counter = sample_counter()
        self.probe_avg_power = analog.probe_avg_mag_sqrd_f(0, 1)
        self.pack_rx_bits = blocks.pack_k_bits_bb(8)
        self.pack_msg_bits = blocks.pack_k_bits_bb(8)
        self.glfsr = digital.glfsr_source_b(8, True, 0, 1)
        self.four_level_symbol_mapper_0 = four_level_symbol_mapper(
            symbol_map=[-1,1],
        )
        self.digital_chunks_to_symbols_xx_0 = digital.chunks_to_symbols_bf(([-1,1]), 1)
        self.blocks_repeat_0 = blocks.repeat(gr.sizeof_float*1, samp_per_sym)
        self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(gr.sizeof_float*1, samp_per_sym)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self.ber_sink = blocks.vector_sink_f(1)
        self.ber_measure = fec.ber_bf(True, min_errors, -7.0)
        self.analog_fastnoise_source_x_0 = analog.fastnoise_source_f(analog.GR_GAUSSIAN, math.sqrt(noise_variance), 0, 8192)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_fastnoise_source_x_0, 0), (self.blocks_add_xx_0, 1))    
        self.connect((self.ber_measure, 0), (self.ber_sink, 0))    
        self.connect((self.blocks_add_xx_0, 0), (self.blocks_keep_one_in_n_0, 0))    
        self.connect((self.blocks_keep_one_in_n_0, 0), (self.four_level_symbol_mapper_0, 0))    
        self.connect((self.blocks_repeat_0, 0), (self.blocks_add_xx_0, 0))    
        self.connect((self.blocks_repeat_0, 0), (self.probe_avg_power, 0))    
        self.connect((self.digital_chunks_to_symbols_xx_0, 0), (self.blocks_repeat_0, 0))    
        self.connect((self.four_level_symbol_mapper_0, 0), (self.sample_counter, 0))    
        self.connect((self.glfsr, 0), (self.digital_chunks_to_symbols_xx_0, 0))    
        self.connect((self.glfsr, 0), (self.pack_msg_bits, 0))    
        self.connect((self.pack_msg_bits, 0), (self.ber_measure, 0))    
        self.connect((self.pack_rx_bits, 0), (self.ber_measure, 1))    
        self.connect((self.sample_counter, 0), (self.pack_rx_bits, 0))    
示例#5
0
    def test_f_003(self):
        alpha = 0.0001
        src_data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
        expected_result = avg_mag_sqrd_f(src_data, alpha)[-1]

        src = blocks.vector_source_f(src_data)
        op = analog.probe_avg_mag_sqrd_f(0, alpha)

        self.tb.connect(src, op)
        self.tb.run()

        result_data = op.level()
        self.assertAlmostEqual(expected_result, result_data, 5)
示例#6
0
 def __init__(self, mode,
         input_rate=0,
         input_center_freq=0,
         rec_freq=100.0,
         audio_destination=None,
         audio_gain=-6,
         audio_pan=0,
         audio_channels=0,
         context=None):
     assert input_rate > 0
     assert audio_channels == 1 or audio_channels == 2
     assert audio_destination is not None
     gr.hier_block2.__init__(
         # str() because insists on non-unicode
         self, str('%s receiver' % (mode,)),
         gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
         gr.io_signature(audio_channels, audio_channels, gr.sizeof_float * 1),
     )
     
     if lookup_mode(mode) is None:
         # TODO: communicate back to client if applicable
         log.msg('Unknown mode %r in Receiver(); using AM' % (mode,))
         mode = 'AM'
     
     # Provided by caller
     self.context = context
     self.input_rate = input_rate
     self.input_center_freq = input_center_freq
     self.__audio_channels = audio_channels
     
     # Simple state
     self.mode = mode
     self.rec_freq = rec_freq
     self.audio_gain = audio_gain
     self.audio_pan = min(1, max(-1, audio_pan))
     self.__audio_destination = audio_destination
     
     # Blocks
     self.__rotator = blocks.rotator_cc()
     self.demodulator = self.__make_demodulator(mode, {})
     self.__update_demodulator_info()
     self.__audio_gain_blocks = [blocks.multiply_const_ff(0.0) for _ in xrange(self.__audio_channels)]
     self.probe_audio = analog.probe_avg_mag_sqrd_f(0, alpha=10.0 / 44100)  # TODO adapt to output audio rate
     
     # Other internals
     self.__last_output_type = None
     
     self.__update_rotator()  # initialize rotator, also in case of __demod_tunable
     self.__update_audio_gain()
     self.__do_connect()
示例#7
0
    def test_f_003(self):
        alpha = 0.0001
        src_data = [1.0, 2.0, 3.0, 4.0, 5.0,
                    6.0, 7.0, 8.0, 9.0, 10.0]
        expected_result = avg_mag_sqrd_f(src_data, alpha)[-1]

        src = blocks.vector_source_f(src_data)
        op = analog.probe_avg_mag_sqrd_f(0, alpha)

        self.tb.connect(src, op)
        self.tb.run()

        result_data = op.level()
        self.assertAlmostEqual(expected_result, result_data, 5)
示例#8
0
	def __init__(self, mode,
			input_rate=0,
			input_center_freq=0,
			audio_rate=0,
			rec_freq=100.0,
			audio_gain=-6,
			audio_pan=0,
			context=None):
		assert input_rate > 0
		assert audio_rate > 0
		gr.hier_block2.__init__(
			# str() because insists on non-unicode
			self, str('%s receiver' % (mode,)),
			gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
			gr.io_signature(2, 2, gr.sizeof_float * 1),
		)
		
		# Provided by caller
		self.input_rate = input_rate
		self.input_center_freq = input_center_freq
		self.audio_rate = audio_rate
		self.context = context
		
		# Simple state
		self.mode = mode
		self.rec_freq = rec_freq
		self.audio_gain = audio_gain
		self.audio_pan = min(1, max(-1, audio_pan))
		
		# Blocks
		self.oscillator = analog.sig_source_c(input_rate, analog.GR_COS_WAVE, -rec_freq, 1, 0)
		self.mixer = blocks.multiply_cc(1)
		self.demodulator = self.__make_demodulator(mode, {})
		self.__demod_tunable = ITunableDemodulator.providedBy(self.demodulator)
		self.audio_gain_l_block = blocks.multiply_const_ff(0.0)
		self.audio_gain_r_block = blocks.multiply_const_ff(0.0)
		self.probe_audio = analog.probe_avg_mag_sqrd_f(0, alpha=10.0 / audio_rate)
		
		self.__update_oscillator()  # in case of __demod_tunable
		self.__update_audio_gain()
		self.__do_connect()
示例#9
0
    def __init__(self):
        gr.top_block.__init__(self, "RX logic")

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 192000
        self.mode = mode = 2
        self.bw = bw = 3200
        self.aud_rate = aud_rate = 22050
        self.visualsq = visualsq = 1
        self.st = st = 1
        self.sq = sq = -700
        self.sb_pos = sb_pos = ((bw*mode==2)-(bw*mode==3))
        self.rec = rec = 1
        self.laj_0 = laj_0 = 0
        self.laj = laj = 0
        self.lai_0 = lai_0 = 0
        self.lai = lai = 0
        self.freq = freq = 98500000
        self.device = device = "fcd=0,type=2"
        self.dev = dev = 19000
        self.decimation = decimation = samp_rate/aud_rate
        self.batswitch = batswitch = 0
        self.batido = batido = 2950
        self.VEC = VEC = 1280

        ##################################################
        # Blocks
        ##################################################
        self.rtlsdr_source_0 = osmosdr.source( args="nchan=" + str(1) + " " + device )
        self.rtlsdr_source_0.set_sample_rate(samp_rate)
        self.rtlsdr_source_0.set_center_freq(freq, 0)
        self.rtlsdr_source_0.set_freq_corr(7, 0)
        self.rtlsdr_source_0.set_dc_offset_mode(0, 0)
        self.rtlsdr_source_0.set_iq_balance_mode(0, 0)
        self.rtlsdr_source_0.set_gain_mode(0, 0)
        self.rtlsdr_source_0.set_gain(14, 0)
        self.rtlsdr_source_0.set_if_gain(14, 0)
        self.rtlsdr_source_0.set_bb_gain(14, 0)
        self.rtlsdr_source_0.set_antenna("", 0)
        self.rtlsdr_source_0.set_bandwidth(0, 0)
          
        self.probe_st = analog.probe_avg_mag_sqrd_f(10, 1)
        self.low_pass_filter_0_2 = filter.fir_filter_ccf(decimation, firdes.low_pass(
        	1, samp_rate, bw*(2+(mode==2)+(mode==3)), 500, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0_1_0_0_0 = filter.fir_filter_fff(1, firdes.low_pass(
        	1, samp_rate, 14000, 1000, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0_1 = filter.fir_filter_fff(1, firdes.low_pass(
        	30, samp_rate, 14000, 1000, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0_0_0_0 = filter.interp_fir_filter_fff(1, firdes.low_pass(
        	visualsq, samp_rate/decimation, bw, 10, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0_0_0 = filter.fir_filter_ccf(1, firdes.low_pass(
        	1, samp_rate/decimation, bw, 10, firdes.WIN_HAMMING, 6.76))
        self.high_pass_filter_0 = filter.fir_filter_ccf(1, firdes.high_pass(
        	1, samp_rate/decimation, bw, 10, firdes.WIN_HAMMING, 6.76))
        self.fractional_resampler_xx_0_0_0 = filter.fractional_resampler_ff(0, samp_rate/48000.0)
        self.fractional_resampler_xx_0_0 = filter.fractional_resampler_ff(0, samp_rate/48000.0)
        self.fractional_resampler_xx_0 = filter.fractional_resampler_ff(0, (samp_rate/decimation)/48000.0)
        self.fft_vxx_0 = fft.fft_vcc(VEC, True, (window.blackmanharris(1024)), True, 1)
        self.fft_probe = blocks.probe_signal_vf(VEC)
        self.blocks_wavfile_sink_0 = blocks.wavfile_sink("/tmp/CAPTURE.WAV", 2, 48000, 16)
        self.blocks_sub_xx_0 = blocks.sub_ff(1)
        self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, VEC)
        self.blocks_multiply_xx_0_1_0 = blocks.multiply_vff(1)
        self.blocks_multiply_xx_0_0_0 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_complex_to_real_0_0_0_0 = blocks.complex_to_real(1)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(VEC)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self.blocks_add_const_vxx_0 = blocks.add_const_vcc((-complex(lai,laj), ))
        self.blks2_valve_0_1 = grc_blks2.valve(item_size=gr.sizeof_float*1, open=bool(rec))
        self.blks2_valve_0_0_1 = grc_blks2.valve(item_size=gr.sizeof_gr_complex*1, open=bool(mode!=5))
        self.blks2_valve_0_0_0 = grc_blks2.valve(item_size=gr.sizeof_gr_complex*1, open=bool(0))
        self.blks2_valve_0_0 = grc_blks2.valve(item_size=gr.sizeof_gr_complex*1, open=bool(mode!=4))
        self.blks2_valve_0 = grc_blks2.valve(item_size=gr.sizeof_float*1, open=bool(rec))
        self.blks2_selector_0_1_0 = grc_blks2.selector(
        	item_size=gr.sizeof_gr_complex*1,
        	num_inputs=2,
        	num_outputs=1,
        	input_index=(mode==3),
        	output_index=0,
        )
        self.blks2_selector_0_0_1_0 = grc_blks2.selector(
        	item_size=gr.sizeof_float*1,
        	num_inputs=3,
        	num_outputs=1,
        	input_index=(mode>3)+(mode>4),
        	output_index=0,
        )
        self.blks2_selector_0_0_1 = grc_blks2.selector(
        	item_size=gr.sizeof_float*1,
        	num_inputs=3,
        	num_outputs=1,
        	input_index=(mode>3)+(mode>4),
        	output_index=0,
        )
        self.blks2_selector_0_0 = grc_blks2.selector(
        	item_size=gr.sizeof_float*1,
        	num_inputs=4,
        	num_outputs=1,
        	input_index=mode,
        	output_index=0,
        )
        self.blks2_selector_0 = grc_blks2.selector(
        	item_size=gr.sizeof_gr_complex*1,
        	num_inputs=1,
        	num_outputs=4,
        	input_index=0,
        	output_index=mode,
        )
        self.band_pass_filter_0_0_0 = filter.fir_filter_fff(1, firdes.band_pass(
        	250, samp_rate, 18500, 19500, 500, firdes.WIN_HAMMING, 6.76))
        self.band_pass_filter_0_0 = filter.fir_filter_fff(1, firdes.band_pass(
        	120, samp_rate, 24000, 52000, 1000, firdes.WIN_HAMMING, 6.76))
        self.audio_sink_0 = audio.sink(48000, "dmix:CARD=Pro,DEV=0", False)
        self.analog_wfm_rcv_1 = analog.wfm_rcv(
        	quad_rate=samp_rate,
        	audio_decimation=1,
        )
        self.analog_sig_source_x_0_0_0 = analog.sig_source_c(samp_rate/decimation, analog.GR_COS_WAVE, -bw, 1, 0)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, dev+(bw*mode==2)+(bw*mode==3), 1, 0)
        self.analog_quadrature_demod_cf_0 = analog.quadrature_demod_cf(0.25)
        self.analog_fm_demod_cf_0 = analog.fm_demod_cf(
        	channel_rate=samp_rate,
        	audio_decim=samp_rate/48000,
        	deviation=50000,
        	audio_pass=15000,
        	audio_stop=16000,
        	gain=3.0,
        	tau=50e-6,
        )
        self.analog_fm_deemph_0_0 = analog.fm_deemph(fs=48000, tau=50e-6)
        self.analog_fm_deemph_0 = analog.fm_deemph(fs=48000, tau=50e-6)
        self.analog_feedforward_agc_cc_0 = analog.feedforward_agc_cc(64, 0.9)
        self.analog_am_demod_cf_0 = analog.am_demod_cf(
        	channel_rate=samp_rate/decimation,
        	audio_decim=samp_rate/decimation/aud_rate,
        	audio_pass=(samp_rate/decimation/2)-500,
        	audio_stop=(samp_rate/decimation/2)-100,
        )
        self.analog_agc3_xx_0 = analog.agc3_cc(0.0001, 0.0001, 0.9, 0.1)
        self.analog_agc3_xx_0.set_max_gain(200)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.fft_probe, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 1))
        self.connect((self.blks2_valve_0_0_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))
        self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.blocks_add_const_vxx_0, 0), (self.blks2_valve_0_0, 0))
        self.connect((self.band_pass_filter_0_0, 0), (self.blocks_multiply_xx_0_1_0, 0))
        self.connect((self.low_pass_filter_0_1, 0), (self.analog_fm_deemph_0, 0))
        self.connect((self.analog_fm_deemph_0, 0), (self.blocks_add_xx_0, 0))
        self.connect((self.analog_wfm_rcv_1, 0), (self.low_pass_filter_0_1, 0))
        self.connect((self.analog_wfm_rcv_1, 0), (self.band_pass_filter_0_0, 0))
        self.connect((self.analog_wfm_rcv_1, 0), (self.band_pass_filter_0_0_0, 0))
        self.connect((self.analog_fm_deemph_0_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.low_pass_filter_0_1_0_0_0, 0), (self.analog_fm_deemph_0_0, 0))
        self.connect((self.analog_agc3_xx_0, 0), (self.analog_wfm_rcv_1, 0))
        self.connect((self.blks2_valve_0_0_1, 0), (self.analog_agc3_xx_0, 0))
        self.connect((self.blocks_add_const_vxx_0, 0), (self.blks2_valve_0_0_1, 0))
        self.connect((self.blocks_multiply_xx_0_1_0, 0), (self.low_pass_filter_0_1_0_0_0, 0))
        self.connect((self.band_pass_filter_0_0_0, 0), (self.blocks_multiply_xx_0_1_0, 1))
        self.connect((self.band_pass_filter_0_0_0, 0), (self.blocks_multiply_xx_0_1_0, 2))
        self.connect((self.analog_fm_deemph_0_0, 0), (self.blocks_sub_xx_0, 1))
        self.connect((self.analog_fm_deemph_0, 0), (self.blocks_sub_xx_0, 0))
        self.connect((self.blocks_sub_xx_0, 0), (self.fractional_resampler_xx_0_0_0, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.fractional_resampler_xx_0_0, 0))
        self.connect((self.blks2_valve_0_0, 0), (self.analog_fm_demod_cf_0, 0))
        self.connect((self.blocks_add_const_vxx_0, 0), (self.blocks_stream_to_vector_0, 0))
        self.connect((self.blocks_add_const_vxx_0, 0), (self.blks2_valve_0_0_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.low_pass_filter_0_2, 0))
        self.connect((self.blocks_complex_to_real_0_0_0_0, 0), (self.blks2_selector_0_0, 3))
        self.connect((self.blocks_complex_to_real_0_0_0_0, 0), (self.blks2_selector_0_0, 2))
        self.connect((self.blks2_selector_0_1_0, 0), (self.blocks_multiply_xx_0_0_0, 0))
        self.connect((self.blocks_multiply_xx_0_0_0, 0), (self.blocks_complex_to_real_0_0_0_0, 0))
        self.connect((self.analog_sig_source_x_0_0_0, 0), (self.blocks_multiply_xx_0_0_0, 1))
        self.connect((self.analog_am_demod_cf_0, 0), (self.blks2_selector_0_0, 0))
        self.connect((self.blks2_selector_0, 0), (self.analog_am_demod_cf_0, 0))
        self.connect((self.analog_quadrature_demod_cf_0, 0), (self.blks2_selector_0_0, 1))
        self.connect((self.blks2_selector_0, 1), (self.analog_quadrature_demod_cf_0, 0))
        self.connect((self.blks2_selector_0_0, 0), (self.low_pass_filter_0_0_0_0, 0))
        self.connect((self.blks2_selector_0, 2), (self.high_pass_filter_0, 0))
        self.connect((self.blks2_selector_0, 3), (self.low_pass_filter_0_0_0, 0))
        self.connect((self.high_pass_filter_0, 0), (self.blks2_selector_0_1_0, 0))
        self.connect((self.low_pass_filter_0_0_0, 0), (self.blks2_selector_0_1_0, 1))
        self.connect((self.analog_fm_demod_cf_0, 0), (self.blks2_selector_0_0_1, 1))
        self.connect((self.analog_fm_demod_cf_0, 0), (self.blks2_selector_0_0_1_0, 1))
        self.connect((self.fractional_resampler_xx_0_0_0, 0), (self.blks2_selector_0_0_1_0, 2))
        self.connect((self.fractional_resampler_xx_0_0, 0), (self.blks2_selector_0_0_1, 2))
        self.connect((self.blks2_selector_0_0_1_0, 0), (self.audio_sink_0, 1))
        self.connect((self.blks2_selector_0_0_1, 0), (self.audio_sink_0, 0))
        self.connect((self.blks2_valve_0, 0), (self.blocks_wavfile_sink_0, 1))
        self.connect((self.blks2_selector_0_0_1_0, 0), (self.blks2_valve_0, 0))
        self.connect((self.blks2_selector_0_0_1, 0), (self.blks2_valve_0_1, 0))
        self.connect((self.blks2_valve_0_1, 0), (self.blocks_wavfile_sink_0, 0))
        self.connect((self.fractional_resampler_xx_0, 0), (self.blks2_selector_0_0_1_0, 0))
        self.connect((self.fractional_resampler_xx_0, 0), (self.blks2_selector_0_0_1, 0))
        self.connect((self.low_pass_filter_0_2, 0), (self.analog_feedforward_agc_cc_0, 0))
        self.connect((self.rtlsdr_source_0, 0), (self.blocks_add_const_vxx_0, 0))
        self.connect((self.low_pass_filter_0_0_0_0, 0), (self.fractional_resampler_xx_0, 0))
        self.connect((self.analog_feedforward_agc_cc_0, 0), (self.blks2_selector_0, 0))
        self.connect((self.band_pass_filter_0_0_0, 0), (self.probe_st, 0))