示例#1
0
 def getNumNeighbors(self,trainingFile):
   temp = None
   if type(trainingFile) is list:
     temp = ModelBuilder(trainingFile,1)
   else:
     temp = ModelBuilder([trainingFile],1)
   temp.downSample()
   temp.buildScaler("scalerTemp.txt")
   temp.scaleData()
   numNeighbors = temp.buildModelNeighbors("modelTemp.txt",202,20,3,1)
   return numNeighbors
示例#2
0
from gold.learn.ModelEvaluator import ModelEvaluator
from gold.learn.Model import ModelBuilder
from gold.learn.Model import Model

temp = ModelBuilder(["working_data/latest/trainfeaturesBtL.csv"],1)
temp.downSample()
temp.buildScaler("working_data/models/trainfeaturesBtLScaler.txt")
temp.scaleData()
#temp.buildFeatureSelector("working_data/models/BtLFeatureSelector.txt",120)
#temp.setFeaturesFromSelector("working_data/models/BtLFeatureSelector.txt")
#temp.selectFeatures()
#temp.buildModelAdaBoost("working_data/models/modelRF100BtL.txt")
temp.buildModelRF("working_data/models/modelRF100BtL.txt",301,20,3,1)
temp.setData(["working_data/latest/devfeaturesBtL.csv"],1)
temp.setScaler("working_data/models/trainfeaturesBtLScaler.txt")
temp.scaleData()
#temp.setFeaturesFromSelector("working_data/models/BtLFeatureSelector.txt")
#temp.selectFeatures()

print temp.evaluateModel("working_data/models/modelRF100BtL.txt")

temp = ModelBuilder(["working_data/latest/trainfeaturesWtK.csv"],1)
temp.downSample()
temp.buildScaler("working_data/models/trainfeaturesWtKScaler.txt")
temp.scaleData()
#temp.buildFeatureSelector("working_data/models/WtKFeatureSelector.txt",120)
#temp.setFeaturesFromSelector("working_data/models/WtKFeatureSelector.txt")
#temp.selectFeatures()
#temp.buildModelAdaBoost("working_data/models/modelRF100WtK.txt")
temp.buildModelRF("working_data/models/modelRF100Wtk.txt",301,20,3,1)
temp.setData(["working_data/latest/devfeaturesWtK.csv"],1)
示例#3
0
  def testModel(self,trainingFile,testFile,numRuns,downsample,scale,pca,model,label):
    precision = 0
    recall = 0
    fmeasure = 0
    accuracy = 0
    runType = label

    if model == 0:
      runType = runType + "LDA"
    elif model == 1:
      runType = runType + "QDA"
    elif model == 2:
      runType = runType + "LogReg"
    elif model == 3:
      runType = runType + "kNN"
    elif model == 4:
      runType = runType + "NaiveBayes"
    elif model == 5:
      runType = runType + "LinearSVM"
    elif model == 6:
      runType = runType + "RandForest"
    elif model == 7:
      runType = runType + "AdaBoost"

    if scale == 1:
      runType = runType + "-scale"

    if downsample == 1:
      runType = runType + "-down"

    if pca == 1:
      runType = runType + "-pca"
    elif pca == 2:
      runType = runType + "-pcaW"


    featureSelector = ""
    if label == "BtL":
      featureSelector = "learn/BtLFeatureSelector.txt"
    elif label == "WtK":
      featureSelector = "learn/WtKFeatureSelector.txt"


    for i in range(0,numRuns):
      temp = ModelBuilder([trainingFile],1)

      if scale == 1:
        temp.buildScaler("scaler.txt")
        temp.scaleData()

      if downsample == 1:
        temp.downSample()

      #temp.setFeaturesFromSelector(featureSelector)
      #temp.selectFeatures()

      if pca == 1:
        try:
          temp.buildDimensionReducer("reducer.txt",False)
          temp.reduceDimensions()
        except Exception as error:
          print error
          numRuns = numRuns - 1
          continue
          runType = runType + "-pcaErr"
          pca = 0
      elif pca == 2:
        try:
          temp.buildDimensionReducer("reducer.txt",True)
          temp.reduceDimensions()
        except Exception as error:
          print error
          numRuns = numRuns - 1
          continue
          runType = runType + "-pcaWErr"
          pca = 0

      if model == 0:
        temp.buildModelLDA("model.txt")
      elif model == 1:
        temp.buildModelQDA("model.txt")
      elif model == 2:
        temp.buildModelLogReg("model.txt")
      elif model == 3:
        if downsample == 1:
          temp.buildModelNeighbors("model.txt",202,20,3,6)
        else:
          temp.buildModelNeighbors("model.txt",102,25,3,6)
      elif model == 4:
        temp.buildModelNB("model.txt")
      elif model == 5:
        temp.buildModelSVM("model.txt")
      elif model == 6:
        temp.buildModelRF("model.txt",202,20,3,6)
      elif model == 7:
        temp.buildModelAdaBoost("model.txt")

      temp.setData([testFile],1)

      if scale == 1:
        temp.setScaler("scaler.txt")
        temp.scaleData()

      #temp.setFeaturesFromSelector(featureSelector)
      #temp.selectFeatures()

      if pca == 1 or pca == 2:
        temp.setDimensionReducer("reducer.txt")
        temp.reduceDimensions()

      stats = temp.evaluateModel("model.txt")

      precision = precision + stats[0]
      recall = recall + stats[1]
      fmeasure = fmeasure + stats[2]
      accuracy = accuracy + stats[3]

    precision = float(precision) / float(numRuns + 0.000001)
    recall = float(recall) / float(numRuns + 0.000001)
    fmeasure = float(fmeasure) / float(numRuns + 0.000001)
    accuracy = float(accuracy) / float(numRuns + 0.000001)
    print runType + "," + str(precision) + "," + str(recall) + "," + str(fmeasure) + "," + str(accuracy)
    return runType + "," + str(precision) + "," + str(recall) + "," + str(fmeasure) + "," + str(accuracy)
示例#4
0
import sys
sys.path.append("/Users/zacharydaniels/Documents/GoLD/src/")
from gold.learn.Model import ModelBuilder
from gold.learn.Model import Model

bestMeasure = 0
bestClass1Weight = 1
bestClass0Weight = 1

training = "extraneous/games/terminal/trainfeaturesBtL_T.csv"
test = "extraneous/games/terminal/devfeaturesBtL_T.csv"

temp = ModelBuilder([training],1)
temp.buildScaler("extraneous/games/train/scaler.txt")
temp.scaleData()

temp2 = ModelBuilder([test],1)
temp2.setScaler("extraneous/games/train/scaler.txt")
temp2.scaleData()

for class1Weight in range(1,20):
  for class0Weight in range(1,2):
    print "(" + str(class1Weight) + "," + str(class0Weight) + ")\n"
    temp.buildModelSVM("extraneous/games/train/model.txt",weights={1:class1Weight,0:class0Weight})
    data = temp2.evaluateModel("extraneous/games/train/model.txt")
    if data[2] > bestMeasure:
      bestMeasure = data[2]
      bestClass1Weight = class1Weight
      bestClass0Weight = class0Weight
      print "Measure: " + str(bestMeasure) + ", Class 1 Weight: " + str(bestClass1Weight) + ", Class 0 Weight: " + str(bestClass0Weight) + "\n"
示例#5
0
def buildModels():
    
    #Down-sample and use SVM
    print('Building SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildModelSVM(base+"modelSVMBtL.txt")
    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildModelSVM(base+"modelSVMWtK.txt")
    
    #Down-sample, scale data, and use SVM
    print('Building scaled SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildModelSVM(base+"modelSVMsBtL.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildModelSVM(base+"modelSVMsWtK.txt")
    
    #Down-sample, scale data, apply PCA, and use SVM
    print('Building scaled PCA SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base+"train/BtLReduce.txt",False)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrBtL.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base+"train/WtKReduce.txt",False)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrWtK.txt")
    
    #Down-sample, apply PCA with whitening, and use SVM
    print('Building PCA with whitening SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildDimensionReducer(base+"train/BtLReduceW.txt",True)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrwBtL.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildDimensionReducer(base+"train/WtKReduceW.txt",True)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrwWtK.txt")
    
    #Use other models
    print('Building other models...')
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    #temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base+"modelSVMcwBtL.txt",weights={0:2,1:3})

    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    #temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base+"modelSVMcwWtK.txt",weights={0:2,1:3})

    #5-Nearest Neighbors
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    temp.buildModelNeighbors(base+"modelNeighborsBtL.txt",5)
    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    temp.buildModelNeighbors(base+"modelNeighborsWtK.txt",5)
    #Random forest of 10 trees
    temp = ModelBuilder([base+"trainfeaturesBtL.csv"])
    ##temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildModelRF(base+"modelRF10BtL.txt",10)
    temp.buildModelRF(base+"modelRF100BtL.txt",100)
    temp.buildModelNB(base+"modelNBBtL.txt")
    
    temp = ModelBuilder([base+"trainfeaturesWtK.csv"])
    ##temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildModelRF(base+"modelRF10WtK.txt",10)
    temp.buildModelRF(base+"modelRF100WtK.txt",100)
    temp.buildModelNB(base+"modelNBWtK.txt")
    print('Done! ')
示例#6
0
def evaluateModels():
    temp = ModelBuilder([base + "devfeaturesBtL.csv"])
    stats = temp.evaluateModel(base + "modelSVMBtL.txt")
    printStats(stats, 'Unscaled SVM BtL')
    temp.setScaler(base + "trainfeaturesBtLScaler.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base + "modelSVMsBtL.txt")
    printStats(stats, 'Scaled SVM BtL')

    stats = temp.evaluateModel(base + "modelNeighborsBtL.txt")
    printStats(stats, 'Scaled NN BtL')
    stats = temp.evaluateModel(base + "modelRF10BtL.txt")
    printStats(stats, 'Scaled RF10 BtL')
    stats = temp.evaluateModel(base + "modelRF100BtL.txt")
    printStats(stats, 'Scaled RF100 BtL')
    stats = temp.evaluateModel(base + "modelNBBtL.txt")

    temp.setDimensionReducer(base + "train/BtLReduce.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base + "modelSVMsrBtL.txt")
    printStats(stats, 'Scaled reduced SVM BtL')

    temp.setData([base + "devfeaturesBtL.csv"])
    temp.setScaler(base + "trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.setDimensionReducer(base + "train/BtLReduceW.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base + "modelSVMsrwBtL.txt")
    printStats(stats, 'Scaled reduced PCA whitened SVM BtL')

    # --------------------------
    temp = ModelBuilder([base + "devfeaturesWtK.csv"])
    stats = temp.evaluateModel(base + "modelSVMWtK.txt")
    printStats(stats, 'Unscaled SVM WtK')

    temp.setScaler(base + "trainfeaturesWtKScaler.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base + "modelSVMsWtK.txt")
    printStats(stats, 'Scaled SVM WtK')

    stats = temp.evaluateModel(base + "modelNeighborsWtK.txt")
    printStats(stats, 'Scaled NN WtK')
    stats = temp.evaluateModel(base + "modelRF10WtK.txt")
    printStats(stats, 'Scaled RF10 WtK')
    stats = temp.evaluateModel(base + "modelRF100WtK.txt")
    printStats(stats, 'Scaled RF100 WtK')
    stats = temp.evaluateModel(base + "modelNBWtK.txt")

    temp.setDimensionReducer(base + "train/WtKReduce.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base + "modelSVMsrWtK.txt")
    printStats(stats, 'Scaled reduced SVM WtK')

    temp.setData([base + "devfeaturesWtK.csv"])
    temp.setScaler(base + "trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.setDimensionReducer(base + "train/WtKReduceW.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base + "modelSVMsrwWtK.txt")
    printStats(stats, 'Scaled reduced whitened SVM WtK')
示例#7
0
def rebuildTermModels(downSample=False):
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    #temp.buildModelRF(base+"modelRF10BtL_T.txt",10)
    temp.buildModelRF(base+"modelRF10BtL_T.txt",10)
    temp.buildModelRF(base+"modelRF5BtL_T.txt",5)

    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    #temp.buildModelRF(base+"modelRF10WtK_T.txt",10)
    temp.buildModelRF(base+"modelRF10WtK_T.txt",10)
    temp.buildModelRF(base+"modelRF5WtK_T.txt",5)
示例#8
0
 def runModelSubset(self,trainingFile,testFile,subset,featureSelectionFlag,numRuns=3):
   stats = [0,0,0,0,0,0]
   features = set()
   for i in range(numRuns):
     temp = ModelBuilder(trainingFile,1)
     temp.setFeatures(subset)
     temp.downSample()
     temp.buildScaler("scalerXYZB.txt")
     temp.scaleData()
     featureIndices = subset
     if featureSelectionFlag:
       featureIndices = temp.buildFeatureSelectorAutomatic("selectorXYZB.txt",5)
       temp.selectFeatures()
     temp.buildModelRF("modelXYZB.txt",301,20,3,6)
     temp.setData(testFile,1)
     temp.setFeatures(subset)
     temp.setScaler("scalerXYZB.txt")
     temp.scaleData()
     if featureSelectionFlag:
       temp.setFeaturesFromSelector("selectorXYZB.txt")
       temp.selectFeatures()
     tempStats = temp.evaluateModel("modelXYZB.txt",plotROC=False)
     stats[0] = stats[0] + tempStats[0]
     stats[1] = stats[1] + tempStats[1]
     stats[2] = stats[2] + tempStats[2]
     stats[3] = stats[3] + tempStats[3]
     stats[4] = stats[4] + tempStats[4]
     stats[5] = stats[5] + len(featureIndices)
     features = features.union(set(featureIndices))
   stats[0] = stats[0] / numRuns
   stats[1] = stats[1] / numRuns
   stats[2] = stats[2] / numRuns
   stats[3] = stats[3] / numRuns
   stats[4] = stats[4] / numRuns
   stats[5] = stats[5] / float(numRuns)
   return stats + [list(features)]
示例#9
0
def buildTermModelsN(probtype, downSample=False):
    start = time.clock()
    istart = start
    if probtype == 1:
        suffix = 'BtL_T'
        ptdesc = 'BtL'
    else:
        suffix = 'WtK_T'
        ptdesc = 'WtK'
    #Down-sample and use SVM
    print('Building SVM models for {}...'.format(suffix))
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv".format(suffix)],1)
    print('Loaded model builder {:.3f} sec...'.format(time.clock()-start))
    if downSample:
        temp.downSample()
    temp.buildModelSVM(base+"modelSVMBtL_T.txt".format(suffix))
    print('BtL model built {:.3f} sec...'.format(time.clock()-istart))

    print('Building scaled SVM models...'.format(suffix))
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv".format(suffix)],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.buildModelSVM(base+"modelSVMsBtL_T.txt")

    #Down-sample, scale data, apply PCA, and use SVM
    print('Building scaled PCA SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base+"train/BtLReduce_T.txt",False)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrBtL_T.txt")

    #Down-sample, apply PCA with whitening, and use SVM
    print('Building PCA with whitening SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildDimensionReducer(base+"train/BtLReduceW_T.txt",True)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrwBtL_T.txt")

    #Use other models
    print('Building other models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base+"modelSVMcwBtL_T.txt",weights={0:2,1:3})

    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.buildModelRF(base+"modelRF5BtL_T.txt",5)
    temp.buildModelRF(base+"modelRF10BtL_T.txt",10)
    temp.buildModelRF(base+"modelRF100BtL_T.txt",100)
    temp.buildModelRF(base+"modelRF200BtL_T.txt",200)
    temp.buildModelNB(base+"modelNBBtL_T.txt")
示例#10
0
def buildTermModels(downSample=False):
    start = time.clock()
    istart = start
    #Down-sample and use SVM
    print('Building SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    print('Loaded model builder {:.3f} sec...'.format(time.clock()-start))
    if downSample:
        temp.downSample()
    temp.buildModelSVM(base+"modelSVMBtL_T.txt")
    print('BtL model built {:.3f} sec...'.format(time.clock()-istart))
    istart = time.clock()
    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildModelSVM(base+"modelSVMWtK_T.txt")
    print('WtKmodel built {:.3f} sec...'.format(time.clock()-istart))
    
    #Down-sample, scale data, and use SVM
    print('Building scaled SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.buildModelSVM(base+"modelSVMsBtL_T.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    temp.buildModelSVM(base+"modelSVMsWtK_T.txt")
    
    #Down-sample, scale data, apply PCA, and use SVM
    print('Building scaled PCA SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base+"BtLReduce_T.txt",False)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrBtL_T.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base+"WtKReduce_T.txt",False)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrWtK_T.txt")
    
    #Down-sample, apply PCA with whitening, and use SVM
    print('Building PCA with whitening SVM models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildDimensionReducer(base+"BtLReduceW_T.txt",True)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrwBtL_T.txt")

    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildDimensionReducer(base+"WtKReduceW_T.txt",True)
    temp.reduceDimensions()
    temp.buildModelSVM(base+"modelSVMsrwWtK_T.txt")
    
    #Use other models
    print('Building other models...')
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base+"modelSVMcwBtL_T.txt",weights={0:2,1:3})

    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base+"modelSVMcwWtK_T.txt",weights={0:2,1:3})

    #5-Nearest Neighbors
    #temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    #temp.downSample()
    #temp.buildModelNeighbors(base+"modelNeighborsBtL_T.txt",5)
    #temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    #temp.downSample()
    #temp.buildModelNeighbors(base+"modelNeighborsWtK_T.txt",5)
    #Random forest of 10 trees
    temp = ModelBuilder([base+"trainfeaturesBtL_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    #temp.buildModelRF(base+"modelRF10BtL_T.txt",10)
    temp.buildModelRF(base+"modelRF10BtL_T.txt",10)
    temp.buildModelRF(base+"modelRF5BtL_T.txt",5)
    temp.buildModelRF(base+"modelRF100BtL_T.txt",100)
    temp.buildModelRF(base+"modelRF200BtL_T.txt",200)
    temp.buildModelNB(base+"modelNBBtL_T.txt")
    
    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    if downSample:
        temp.downSample()
    temp.buildScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    #temp.buildModelRF(base+"modelRF10WtK_T.txt",10)
    temp.buildModelRF(base+"modelRF10WtK_T.txt",10)
    temp.buildModelRF(base+"modelRF5WtK_T.txt",5)
    temp.buildModelRF(base+"modelRF100WtK_T.txt",100)
    temp.buildModelRF(base+"modelRF200WtK_T.txt",200)
    temp.buildModelNB(base+"modelNBWtK_T.txt")
    print('Done! ')
示例#11
0
def evaluateModel(modelType):
    temp = ModelBuilder([base+"devfeatures"+modelType+".csv"],1)
    stats = temp.evaluateModel(base+"modelSVM"+modelType+".txt")
    printStats(stats, 'Unscaled SVM '+modelType)
    stats = temp.evaluateModel(base+"modelSVMcw"+modelType+".txt")
    printStats(stats, 'Unscaled weighted SVM '+modelType)
    stats = temp.evaluateModel(base+"modelNeighbors"+modelType+".txt")
    printStats(stats, 'Unscaled NN '+modelType)
    stats = temp.evaluateModel(base+"modelRF10"+modelType+".txt")
    printStats(stats, 'Unscaled RF10 '+modelType)
    stats = temp.evaluateModel(base+"modelRF100"+modelType+".txt")
    printStats(stats, 'Unscaled RF100 '+modelType)
    stats = temp.evaluateModel(base+"modelNB"+modelType+".txt")
    printStats(stats, 'Unscaled NB '+modelType)

    temp.setScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base+"modelSVMs"+modelType+".txt")
    printStats(stats, 'Scaled SVM '+modelType)

    temp.setDimensionReducer(base+"WtKReduce.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsr"+modelType+".txt")
    printStats(stats, 'Scaled reduced SVM '+modelType)

    temp = ModelBuilder([base+"devfeatures"+modelType+".csv"],1)
    temp.setScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.setDimensionReducer(base+"WtKReduceW.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrw"+modelType+".txt")
    printStats(stats, 'Scaled reduced whitened SVM '+modelType)
示例#12
0
sys.path.append("/Users/zacharydaniels/Documents/GoLD/src/")
from gold.features.trainer import MoveTrainer
from gold.learn.Model import ModelBuilder
from gold.learn.Model import Model

#Extract Features
temp = MoveTrainer(["extraneous/games/train/"])
temp.train()
temp = MoveTrainer(["extraneous/games/dev/"])
temp.train()

#0: Good move or bad move, 1: terminal solution state or not
classType = 0

#SVM
temp = ModelBuilder(["extraneous/games/train/featuresBtL.csv"], classType)
temp.buildModelSVM("extraneous/games/train/modelSVMBtL.txt", weights='auto')
#temp.setData(["extraneous/games/dev/featuresBtL.csv"],classType)
temp.evaluateModel("extraneous/games/train/modelSVMBtL.txt")
temp = ModelBuilder(["extraneous/games/train/featuresWtK.csv"], classType)
temp.buildModelSVM("extraneous/games/train/modelSVMWtK.txt")
#temp.setData(["extraneous/games/dev/featuresWtK.csv"],classType)
temp.evaluateModel("extraneous/games/train/modelSVMWtK.txt")

#Scale data and use SVM
temp = ModelBuilder(["extraneous/games/train/featurestL.csv"], classType)
temp.buildScaler("extraneous/games/train/featuresBtLScaler.txt")
temp.scaleData()
temp.buildModelSVM("extraneous/games/train/modelSVM.txt")
temp.setData(["extraneous/games/dev/featuresBtL.csv"], classType)
temp.setScaler("extraneous/games/train/featuresBtLScaler.txt")
示例#13
0
def buildModels():

    #Down-sample and use SVM
    print('Building SVM models...')
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildModelSVM(base + "modelSVMBtL.txt")
    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildModelSVM(base + "modelSVMWtK.txt")

    #Down-sample, scale data, and use SVM
    print('Building scaled SVM models...')
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildScaler(base + "trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildModelSVM(base + "modelSVMsBtL.txt")

    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildScaler(base + "trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildModelSVM(base + "modelSVMsWtK.txt")

    #Down-sample, scale data, apply PCA, and use SVM
    print('Building scaled PCA SVM models...')
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildScaler(base + "trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base + "train/BtLReduce.txt", False)
    temp.reduceDimensions()
    temp.buildModelSVM(base + "modelSVMsrBtL.txt")

    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildScaler(base + "trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildDimensionReducer(base + "train/WtKReduce.txt", False)
    temp.reduceDimensions()
    temp.buildModelSVM(base + "modelSVMsrWtK.txt")

    #Down-sample, apply PCA with whitening, and use SVM
    print('Building PCA with whitening SVM models...')
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    #temp.downSample()
    temp.buildDimensionReducer(base + "train/BtLReduceW.txt", True)
    temp.reduceDimensions()
    temp.buildModelSVM(base + "modelSVMsrwBtL.txt")

    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    #temp.downSample()
    temp.buildDimensionReducer(base + "train/WtKReduceW.txt", True)
    temp.reduceDimensions()
    temp.buildModelSVM(base + "modelSVMsrwWtK.txt")

    #Use other models
    print('Building other models...')
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    #temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base + "modelSVMcwBtL.txt", weights={0: 2, 1: 3})

    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    #temp.downSample()
    #Weighted SVM: Class 0 Weight: 1, Class 1 Weight: 2
    temp.buildModelSVM(base + "modelSVMcwWtK.txt", weights={0: 2, 1: 3})

    #5-Nearest Neighbors
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    temp.buildModelNeighbors(base + "modelNeighborsBtL.txt", 5)
    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    temp.buildModelNeighbors(base + "modelNeighborsWtK.txt", 5)
    #Random forest of 10 trees
    temp = ModelBuilder([base + "trainfeaturesBtL.csv"])
    ##temp.downSample()
    temp.buildScaler(base + "trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.buildModelRF(base + "modelRF10BtL.txt", 10)
    temp.buildModelRF(base + "modelRF100BtL.txt", 100)
    temp.buildModelNB(base + "modelNBBtL.txt")

    temp = ModelBuilder([base + "trainfeaturesWtK.csv"])
    ##temp.downSample()
    temp.buildScaler(base + "trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.buildModelRF(base + "modelRF10WtK.txt", 10)
    temp.buildModelRF(base + "modelRF100WtK.txt", 100)
    temp.buildModelNB(base + "modelNBWtK.txt")
    print('Done! ')
示例#14
0
  def testModel(self,trainingFile,testFile,numRuns,downsample,scale,pca,model,label,num_trees,num_neighbors):
    precision = 0
    recall = 0
    fmeasure = 0
    accuracy = 0
    runType = label

    if model == 0:
      runType = runType + "LDA"
    elif model == 1:
      runType = runType + "QDA"
    elif model == 2:
      runType = runType + "LogReg"
    elif model == 3:
      runType = runType + "kNN"
    elif model == 4:
      runType = runType + "NaiveBayes"
    elif model == 5:
      runType = runType + "LinearSVM"
    elif model == 6:
      runType = runType + "RandForest"
    elif model == 7:
      runType = runType + "AdaBoost"

    if scale == 1:
      runType = runType + "-scale"

    if downsample == 1:
      runType = runType + "-down"

    if pca == 1:
      runType = runType + "-pca"
    elif pca == 2:
      runType = runType + "-pcaW"


    featureSelector = ""
    if label == "BtL":
      featureSelector = "learn/BtLFeatureSelector.txt"
    elif label == "WtK":
      featureSelector = "learn/WtKFeatureSelector.txt"


    for i in range(0,numRuns):
      temp = None
      if type(trainingFile) is list:
        temp = ModelBuilder(trainingFile,1)
      else:
        temp = ModelBuilder([trainingFile],1)

      if scale == 1:
        temp.buildScaler("scalerFOREVAL.txt")
        temp.scaleData()

      if downsample == 1:
        temp.downSample()

      #temp.setFeaturesFromSelector(featureSelector)
      #temp.selectFeatures()

      if pca == 1:
        try:
          temp.buildDimensionReducer("reducerFOREVAL.txt",False)
          temp.reduceDimensions()
        except Exception as error:
          print error
          numRuns = numRuns - 1
          continue
          runType = runType + "-pcaErr"
          pca = 0
      elif pca == 2:
        try:
          temp.buildDimensionReducer("reducerFOREVAL.txt",True)
          temp.reduceDimensions()
        except Exception as error:
          print error
          numRuns = numRuns - 1
          continue
          runType = runType + "-pcaWErr"
          pca = 0

      if model == 0:
        temp.buildModelLDA("modelFOREVAL.txt")
      elif model == 1:
        temp.buildModelQDA("modelFOREVAL.txt")
      elif model == 2:
        temp.buildModelLogReg("modelFOREVAL.txt")
      elif model == 3:
        temp.buildModelNeighbors("modelFOREVAL.txt",numNeighbors=num_neighbors)
      elif model == 4:
        temp.buildModelNB("modelFOREVAL.txt")
      elif model == 5:
        temp.buildModelSVM("modelFOREVAL.txt")
      elif model == 6:
        temp.buildModelRF("modelFOREVAL.txt",numTrees=num_trees)
      elif model == 7:
        temp.buildModelAdaBoost("modelFOREVAL.txt")

      temp.setData([testFile],1)

      if scale == 1:
        temp.setScaler("scalerFOREVAL.txt")
        temp.scaleData()

      #temp.setFeaturesFromSelector(featureSelector)
      #temp.selectFeatures()

      if pca == 1 or pca == 2:
        temp.setDimensionReducer("reducerFOREVAL.txt")
        temp.reduceDimensions()

      stats = temp.evaluateModel("modelFOREVAL.txt")

      precision = precision + stats[0]
      recall = recall + stats[1]
      fmeasure = fmeasure + stats[2]
      accuracy = accuracy + stats[3]

    precision = float(precision) / float(numRuns + 0.000001)
    recall = float(recall) / float(numRuns + 0.000001)
    fmeasure = float(fmeasure) / float(numRuns + 0.000001)
    accuracy = float(accuracy) / float(numRuns + 0.000001)
    print runType + "," + str(precision) + "," + str(recall) + "," + str(fmeasure) + "," + str(accuracy)
    return runType + "," + str(precision) + "," + str(recall) + "," + str(fmeasure) + "," + str(accuracy)
示例#15
0
def evaluateTermModels():
    maxB = 0.0
    maxW = 0.0
    temp = ModelBuilder([base+"devfeaturesBtL_T.csv"],1)
    stats = temp.evaluateModel(base+"modelSVMBtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Unscaled SVM BtL')
    temp.setScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base+"modelSVMsBtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled SVM BtL')

    #stats = temp.evaluateModel(base+"modelNeighborsBtL_T.txt")
    #printStats(stats, 'Scaled NN BtL')
    stats = temp.evaluateModel(base+"modelRF5BtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled RF5 BtL')
    stats = temp.evaluateModel(base+"modelRF10BtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled RF10 BtL')
    stats = temp.evaluateModel(base+"modelRF100BtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled RF100 BtL')
    stats = temp.evaluateModel(base+"modelRF200BtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled RF200 BtL')
    stats = temp.evaluateModel(base+"modelNBBtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled NB BtL')

    temp.setDimensionReducer(base+"BtLReduce_T.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrBtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled reduced SVM BtL')

    #temp.setData([base+"devfeaturesBtL.csv"])
    temp = ModelBuilder([base+"devfeaturesBtL_T.csv"],1)
    temp.setScaler(base+"trainfeaturesBtLScaler_T.txt")
    temp.scaleData()
    temp.setDimensionReducer(base+"BtLReduceW_T.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrwBtL_T.txt")
    maxB = max(maxB, stats[0])
    printStats(stats, 'Scaled reduced PCA whitened SVM BtL')
    # --------------------------
    temp = ModelBuilder([base+"trainfeaturesWtK_T.csv"],1)
    temp.buildModelNeighbors(base+"modelNeighborsWtK_T.txt",5)
    temp = ModelBuilder([base+"devfeaturesWtK_T.csv"],1)
    stats = temp.evaluateModel(base+"modelSVMWtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Unscaled SVM WtK')
    
    temp.setScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base+"modelSVMsWtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled SVM WtK')

    #stats = temp.evaluateModel(base+"modelNeighborsWtK.txt")
    #printStats(stats, 'Scaled NN WtK')
    stats = temp.evaluateModel(base+"modelRF5WtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled RF5 WtK')
    stats = temp.evaluateModel(base+"modelRF10WtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled RF10 WtK')
    stats = temp.evaluateModel(base+"modelRF100WtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled RF100 WtK')
    stats = temp.evaluateModel(base+"modelRF200WtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled RF200 WtK')
    stats = temp.evaluateModel(base+"modelNBWtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled NB WtK')

    temp.setDimensionReducer(base+"WtKReduce_T.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrWtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled reduced SVM WtK')

    temp = ModelBuilder([base+"devfeaturesWtK_T.csv"],1)
    temp.setScaler(base+"trainfeaturesWtKScaler_T.txt")
    temp.scaleData()
    temp.setDimensionReducer(base+"WtKReduceW_T.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrwWtK_T.txt")
    maxW = max(maxW, stats[0])
    printStats(stats, 'Scaled reduced whitened SVM WtK')
    return [maxB, maxW]
示例#16
0
 def __init__(self, dataFileList, outputFile):
     temp = ModelBuilder(dataFileList)
     temp.downSample()
     temp.buildModelSVM(outputFile)
示例#17
0
def redoMF():
    start = time.clock()
    istart = start

    temp = ModelBuilder([base+"trainfeaturesBtL.csv"],1)
    temp.downSample()
    temp.buildScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    dev = ModelBuilder([base+'devfeaturesBtL.csv'],1)
    dev.setScaler(base+"trainfeaturesBtLScaler.txt")
    dev.scaleData()
    r = 0.5
    while( r<0.92 ):
        temp.buildModelRF(base+"modelRF100BtL.txt",100)
        stats = dev.evaluateModel(base+"modelRF100BtL.txt")
        r = stats[1]
        printStats(stats, 'Scaled RF100 BtL')
示例#18
0
def evaluateModels():
    temp = ModelBuilder([base+"devfeaturesBtL.csv"])
    stats = temp.evaluateModel(base+"modelSVMBtL.txt")
    printStats(stats, 'Unscaled SVM BtL')
    temp.setScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base+"modelSVMsBtL.txt")
    printStats(stats, 'Scaled SVM BtL')

    stats = temp.evaluateModel(base+"modelNeighborsBtL.txt")
    printStats(stats, 'Scaled NN BtL')
    stats = temp.evaluateModel(base+"modelRF10BtL.txt")
    printStats(stats, 'Scaled RF10 BtL')
    stats = temp.evaluateModel(base+"modelRF100BtL.txt")
    printStats(stats, 'Scaled RF100 BtL')
    stats = temp.evaluateModel(base+"modelNBBtL.txt")

    temp.setDimensionReducer(base+"train/BtLReduce.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrBtL.txt")
    printStats(stats, 'Scaled reduced SVM BtL')

    temp.setData([base+"devfeaturesBtL.csv"])
    temp.setScaler(base+"trainfeaturesBtLScaler.txt")
    temp.scaleData()
    temp.setDimensionReducer(base+"train/BtLReduceW.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrwBtL.txt")
    printStats(stats, 'Scaled reduced PCA whitened SVM BtL')


    # --------------------------
    temp = ModelBuilder([base+"devfeaturesWtK.csv"])
    stats = temp.evaluateModel(base+"modelSVMWtK.txt")
    printStats(stats, 'Unscaled SVM WtK')
    
    temp.setScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    stats = temp.evaluateModel(base+"modelSVMsWtK.txt")
    printStats(stats, 'Scaled SVM WtK')

    stats = temp.evaluateModel(base+"modelNeighborsWtK.txt")
    printStats(stats, 'Scaled NN WtK')
    stats = temp.evaluateModel(base+"modelRF10WtK.txt")
    printStats(stats, 'Scaled RF10 WtK')
    stats = temp.evaluateModel(base+"modelRF100WtK.txt")
    printStats(stats, 'Scaled RF100 WtK')
    stats = temp.evaluateModel(base+"modelNBWtK.txt")

    temp.setDimensionReducer(base+"train/WtKReduce.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrWtK.txt")
    printStats(stats, 'Scaled reduced SVM WtK')

    temp.setData([base+"devfeaturesWtK.csv"])
    temp.setScaler(base+"trainfeaturesWtKScaler.txt")
    temp.scaleData()
    temp.setDimensionReducer(base+"train/WtKReduceW.txt")
    temp.reduceDimensions()
    stats = temp.evaluateModel(base+"modelSVMsrwWtK.txt")
    printStats(stats, 'Scaled reduced whitened SVM WtK')
示例#19
0
import sys
sys.path.append("/Users/zacharydaniels/Documents/GoLD/src/")
from gold.learn.Model import ModelBuilder
from gold.learn.Model import Model

bestMeasure = 0
bestClass1Weight = 1
bestClass0Weight = 1

training = "extraneous/games/terminal/trainfeaturesBtL_T.csv"
test = "extraneous/games/terminal/devfeaturesBtL_T.csv"

temp = ModelBuilder([training], 1)
temp.buildScaler("extraneous/games/train/scaler.txt")
temp.scaleData()

temp2 = ModelBuilder([test], 1)
temp2.setScaler("extraneous/games/train/scaler.txt")
temp2.scaleData()

for class1Weight in range(1, 20):
    for class0Weight in range(1, 2):
        print "(" + str(class1Weight) + "," + str(class0Weight) + ")\n"
        temp.buildModelSVM("extraneous/games/train/model.txt",
                           weights={
                               1: class1Weight,
                               0: class0Weight
                           })
        data = temp2.evaluateModel("extraneous/games/train/model.txt")
        if data[2] > bestMeasure:
            bestMeasure = data[2]
示例#20
0
 def runModelSubset(self,
                    trainingFile,
                    testFile,
                    subset,
                    featureSelectionFlag,
                    numRuns=3):
     stats = [0, 0, 0, 0, 0, 0]
     features = set()
     for i in range(numRuns):
         temp = ModelBuilder(trainingFile, 1)
         temp.setFeatures(subset)
         temp.downSample()
         temp.buildScaler("scalerXYZB.txt")
         temp.scaleData()
         featureIndices = subset
         if featureSelectionFlag:
             featureIndices = temp.buildFeatureSelectorAutomatic(
                 "selectorXYZB.txt", 5)
             temp.selectFeatures()
         temp.buildModelRF("modelXYZB.txt", 301, 20, 3, 6)
         temp.setData(testFile, 1)
         temp.setFeatures(subset)
         temp.setScaler("scalerXYZB.txt")
         temp.scaleData()
         if featureSelectionFlag:
             temp.setFeaturesFromSelector("selectorXYZB.txt")
             temp.selectFeatures()
         tempStats = temp.evaluateModel("modelXYZB.txt", plotROC=False)
         stats[0] = stats[0] + tempStats[0]
         stats[1] = stats[1] + tempStats[1]
         stats[2] = stats[2] + tempStats[2]
         stats[3] = stats[3] + tempStats[3]
         stats[4] = stats[4] + tempStats[4]
         stats[5] = stats[5] + len(featureIndices)
         features = features.union(set(featureIndices))
     stats[0] = stats[0] / numRuns
     stats[1] = stats[1] / numRuns
     stats[2] = stats[2] / numRuns
     stats[3] = stats[3] / numRuns
     stats[4] = stats[4] / numRuns
     stats[5] = stats[5] / float(numRuns)
     return stats + [list(features)]
 def __init__(self,dataFileList,outputFile):
   temp = ModelBuilder(dataFileList)
   temp.downSample()
   temp.buildModelSVM(outputFile)