def save_sinesweep_analysis_CSV(self):
        def callback(specimens):
            analysers = self.core.get_manalysers(specimen)                
            sinesweep.save_sinesweep_analysis_CSV(analysers)
 

        select_specimens(self.core, callback, with_movements=True) 
    def export_LR_displacement_CSV(self, strong_weak_division=False):
        '''
        Grouped to left right
        '''
        def callback(specimens):
            group_name = ask_string('Group name', 'Name the selected group of specimens', self.tk_root)
            analysers = self.core.get_manalysers(specimens)
            left_right_displacements(analysers, group_name,
                    strong_weak_division=strong_weak_division) 

        select_specimens(self.core, callback, with_movements=True) 
    def save_kinematics_analysis_CSV(self):

        def callback(specimens):
            
            fn = tk.filedialog.asksaveasfilename(title='Save kinematics analysis', initialfile='latencies.csv')
            
            if fn:
                analysers = self.core.get_manalysers(specimens)
                kinematics.save_sigmoidal_fit_CSV(analysers, fn)
 

        select_specimens(self.core, callback, with_movements=True) 
    def averaged_vectormap_DASH_rotating_video_multiprocessing(self):
        
        def run_workers(specimens):
            if len(specimens) > 0:
                N_workers = os.cpu_count()
                for i_worker in range(N_workers):
                    if i_worker != 0:
                        additional = '--dont-show'
                    else:
                        additional = ''
                    self.core.adm_subprocess(specimens, '--tk_waiting_window --worker-info {} {} --average -A vectormap_video'.format(i_worker, N_workers)) 


        select_specimens(self.core, run_workers, with_movements=True) 
 def link_ERG_data_from_labbook(self):
     select_specimens(self.core, linked_data.link_erg_labbook, command_args=[lambda: filedialog.askopenfilename(title='Select ERG'), lambda: filedialog.askdirectory(title='Select data folder')], return_manalysers=True )
 def _preedit():
     select_specimens(self.core, _postedit)
 def comparision_to_optic_flow_DASH_video(self): 
     select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A flow_analysis_pitch'), with_movements=True) 
 def averaged_vectormap_DASH_rotating_video_DASH_set_title(self):
     ask_string('Set title', 'Give video title', lambda title: select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average --short-name {} -A vectormap_video'.format(title)), with_movements=True)) 
 def averaged_vectormap_DASH_rotating_video(self):
     select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A vectormap_video'), with_movements=True) 
示例#10
0
 def averaged_vectormap_DASH_interactive_plot(self):
     select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A vectormap'), with_movements=True)
示例#11
0
 def measure_movements_DASH_in_absolute_coordinates(self):
     func = lambda specimens: self._batch_measure(specimens, absolute_coordinates=True)
     select_specimens(self.core, func, with_rois=True)
示例#12
0
    def measure_movements_DASH_list_only_unmeasured(self):

        select_specimens(self.core, self._batch_measure, with_rois=True, with_movements=False)
示例#13
0
    def measure_movements_DASH_list_all(self):

        select_specimens(self.core, self._batch_measure, with_rois=True)