def save_sinesweep_analysis_CSV(self): def callback(specimens): analysers = self.core.get_manalysers(specimen) sinesweep.save_sinesweep_analysis_CSV(analysers) select_specimens(self.core, callback, with_movements=True)
def export_LR_displacement_CSV(self, strong_weak_division=False): ''' Grouped to left right ''' def callback(specimens): group_name = ask_string('Group name', 'Name the selected group of specimens', self.tk_root) analysers = self.core.get_manalysers(specimens) left_right_displacements(analysers, group_name, strong_weak_division=strong_weak_division) select_specimens(self.core, callback, with_movements=True)
def save_kinematics_analysis_CSV(self): def callback(specimens): fn = tk.filedialog.asksaveasfilename(title='Save kinematics analysis', initialfile='latencies.csv') if fn: analysers = self.core.get_manalysers(specimens) kinematics.save_sigmoidal_fit_CSV(analysers, fn) select_specimens(self.core, callback, with_movements=True)
def averaged_vectormap_DASH_rotating_video_multiprocessing(self): def run_workers(specimens): if len(specimens) > 0: N_workers = os.cpu_count() for i_worker in range(N_workers): if i_worker != 0: additional = '--dont-show' else: additional = '' self.core.adm_subprocess(specimens, '--tk_waiting_window --worker-info {} {} --average -A vectormap_video'.format(i_worker, N_workers)) select_specimens(self.core, run_workers, with_movements=True)
def link_ERG_data_from_labbook(self): select_specimens(self.core, linked_data.link_erg_labbook, command_args=[lambda: filedialog.askopenfilename(title='Select ERG'), lambda: filedialog.askdirectory(title='Select data folder')], return_manalysers=True )
def _preedit(): select_specimens(self.core, _postedit)
def comparision_to_optic_flow_DASH_video(self): select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A flow_analysis_pitch'), with_movements=True)
def averaged_vectormap_DASH_rotating_video_DASH_set_title(self): ask_string('Set title', 'Give video title', lambda title: select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average --short-name {} -A vectormap_video'.format(title)), with_movements=True))
def averaged_vectormap_DASH_rotating_video(self): select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A vectormap_video'), with_movements=True)
def averaged_vectormap_DASH_interactive_plot(self): select_specimens(self.core, lambda specimens: self.core.adm_subprocess(specimens, '--tk_waiting_window --average -A vectormap'), with_movements=True)
def measure_movements_DASH_in_absolute_coordinates(self): func = lambda specimens: self._batch_measure(specimens, absolute_coordinates=True) select_specimens(self.core, func, with_rois=True)
def measure_movements_DASH_list_only_unmeasured(self): select_specimens(self.core, self._batch_measure, with_rois=True, with_movements=False)
def measure_movements_DASH_list_all(self): select_specimens(self.core, self._batch_measure, with_rois=True)