async def test_batch_predict_field_headers_async(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = prediction_service.BatchPredictRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._client._transport.batch_predict), "__call__") as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/op")) await client.batch_predict(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "name=name/value", ) in kw["metadata"]
async def test_batch_predict_async(transport: str = "grpc_asyncio"): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = prediction_service.BatchPredictRequest() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._client._transport.batch_predict), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam")) response = await client.batch_predict(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the response is the type that we expect. assert isinstance(response, future.Future)
async def test_predict_flattened_async(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._client._transport.predict), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = prediction_service.PredictResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( prediction_service.PredictResponse()) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.predict( name="name_value", payload=data_items.ExamplePayload(image=data_items.Image( image_bytes=b"image_bytes_blob")), params={"key_value": "value_value"}, ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].name == "name_value" assert args[0].payload == data_items.ExamplePayload( image=data_items.Image(image_bytes=b"image_bytes_blob")) assert args[0].params == {"key_value": "value_value"}
async def test_predict_flattened_error_async(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.predict( prediction_service.PredictRequest(), name="name_value", payload=data_items.ExamplePayload(image=data_items.Image( image_bytes=b"image_bytes_blob")), params={"key_value": "value_value"}, )
def test_prediction_service_grpc_lro_async_client(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), transport="grpc_asyncio", ) transport = client._client._transport # Ensure that we have a api-core operations client. assert isinstance( transport.operations_client, operations_v1.OperationsAsyncClient, ) # Ensure that subsequent calls to the property send the exact same object. assert transport.operations_client is transport.operations_client
async def test_batch_predict_flattened_error_async(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.batch_predict( prediction_service.BatchPredictRequest(), name="name_value", input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource( input_uris=["input_uris_value"])), output_config=io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")), params={"key_value": "value_value"}, )
async def test_batch_predict_flattened_async(): client = PredictionServiceAsyncClient( credentials=credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._client._transport.batch_predict), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") call.return_value = grpc_helpers_async.FakeUnaryUnaryCall( operations_pb2.Operation(name="operations/spam")) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.batch_predict( name="name_value", input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource( input_uris=["input_uris_value"])), output_config=io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")), params={"key_value": "value_value"}, ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].name == "name_value" assert args[0].input_config == io.BatchPredictInputConfig( gcs_source=io.GcsSource(input_uris=["input_uris_value"])) assert args[0].output_config == io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")) assert args[0].params == {"key_value": "value_value"}