示例#1
0
async def test_batch_predict_field_headers_async():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(), )

    # Any value that is part of the HTTP/1.1 URI should be sent as
    # a field header. Set these to a non-empty value.
    request = prediction_service.BatchPredictRequest()
    request.name = "name/value"

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client._client._transport.batch_predict),
                           "__call__") as call:
        call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(
            operations_pb2.Operation(name="operations/op"))

        await client.batch_predict(request)

        # Establish that the underlying gRPC stub method was called.
        assert len(call.mock_calls)
        _, args, _ = call.mock_calls[0]
        assert args[0] == request

    # Establish that the field header was sent.
    _, _, kw = call.mock_calls[0]
    assert (
        "x-goog-request-params",
        "name=name/value",
    ) in kw["metadata"]
示例#2
0
async def test_batch_predict_async(transport: str = "grpc_asyncio"):
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(),
        transport=transport,
    )

    # Everything is optional in proto3 as far as the runtime is concerned,
    # and we are mocking out the actual API, so just send an empty request.
    request = prediction_service.BatchPredictRequest()

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client._client._transport.batch_predict),
                           "__call__") as call:
        # Designate an appropriate return value for the call.
        call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(
            operations_pb2.Operation(name="operations/spam"))

        response = await client.batch_predict(request)

        # Establish that the underlying gRPC stub method was called.
        assert len(call.mock_calls)
        _, args, _ = call.mock_calls[0]

        assert args[0] == request

    # Establish that the response is the type that we expect.
    assert isinstance(response, future.Future)
示例#3
0
async def test_predict_flattened_async():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(), )

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client._client._transport.predict),
                           "__call__") as call:
        # Designate an appropriate return value for the call.
        call.return_value = prediction_service.PredictResponse()

        call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(
            prediction_service.PredictResponse())
        # Call the method with a truthy value for each flattened field,
        # using the keyword arguments to the method.
        response = await client.predict(
            name="name_value",
            payload=data_items.ExamplePayload(image=data_items.Image(
                image_bytes=b"image_bytes_blob")),
            params={"key_value": "value_value"},
        )

        # Establish that the underlying call was made with the expected
        # request object values.
        assert len(call.mock_calls)
        _, args, _ = call.mock_calls[0]

        assert args[0].name == "name_value"

        assert args[0].payload == data_items.ExamplePayload(
            image=data_items.Image(image_bytes=b"image_bytes_blob"))

        assert args[0].params == {"key_value": "value_value"}
示例#4
0
async def test_predict_flattened_error_async():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(), )

    # Attempting to call a method with both a request object and flattened
    # fields is an error.
    with pytest.raises(ValueError):
        await client.predict(
            prediction_service.PredictRequest(),
            name="name_value",
            payload=data_items.ExamplePayload(image=data_items.Image(
                image_bytes=b"image_bytes_blob")),
            params={"key_value": "value_value"},
        )
示例#5
0
def test_prediction_service_grpc_lro_async_client():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(),
        transport="grpc_asyncio",
    )
    transport = client._client._transport

    # Ensure that we have a api-core operations client.
    assert isinstance(
        transport.operations_client,
        operations_v1.OperationsAsyncClient,
    )

    # Ensure that subsequent calls to the property send the exact same object.
    assert transport.operations_client is transport.operations_client
示例#6
0
async def test_batch_predict_flattened_error_async():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(), )

    # Attempting to call a method with both a request object and flattened
    # fields is an error.
    with pytest.raises(ValueError):
        await client.batch_predict(
            prediction_service.BatchPredictRequest(),
            name="name_value",
            input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource(
                input_uris=["input_uris_value"])),
            output_config=io.BatchPredictOutputConfig(
                gcs_destination=io.GcsDestination(
                    output_uri_prefix="output_uri_prefix_value")),
            params={"key_value": "value_value"},
        )
示例#7
0
async def test_batch_predict_flattened_async():
    client = PredictionServiceAsyncClient(
        credentials=credentials.AnonymousCredentials(), )

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client._client._transport.batch_predict),
                           "__call__") as call:
        # Designate an appropriate return value for the call.
        call.return_value = operations_pb2.Operation(name="operations/op")

        call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(
            operations_pb2.Operation(name="operations/spam"))
        # Call the method with a truthy value for each flattened field,
        # using the keyword arguments to the method.
        response = await client.batch_predict(
            name="name_value",
            input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource(
                input_uris=["input_uris_value"])),
            output_config=io.BatchPredictOutputConfig(
                gcs_destination=io.GcsDestination(
                    output_uri_prefix="output_uri_prefix_value")),
            params={"key_value": "value_value"},
        )

        # Establish that the underlying call was made with the expected
        # request object values.
        assert len(call.mock_calls)
        _, args, _ = call.mock_calls[0]

        assert args[0].name == "name_value"

        assert args[0].input_config == io.BatchPredictInputConfig(
            gcs_source=io.GcsSource(input_uris=["input_uris_value"]))

        assert args[0].output_config == io.BatchPredictOutputConfig(
            gcs_destination=io.GcsDestination(
                output_uri_prefix="output_uri_prefix_value"))

        assert args[0].params == {"key_value": "value_value"}