def test_get_rest_flattened_error(): client = MachineTypesClient(credentials=ga_credentials.AnonymousCredentials(),) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get( compute.GetMachineTypeRequest(), project="project_value", zone="zone_value", machine_type="machine_type_value", )
def get( self, request: compute.GetMachineTypeRequest = None, *, project: str = None, zone: str = None, machine_type: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.MachineType: r"""Returns the specified machine type. Gets a list of available machine types by making a list() request. Args: request (google.cloud.compute_v1.types.GetMachineTypeRequest): The request object. A request message for MachineTypes.Get. See the method description for details. project (str): Project ID for this request. This corresponds to the ``project`` field on the ``request`` instance; if ``request`` is provided, this should not be set. zone (str): The name of the zone for this request. This corresponds to the ``zone`` field on the ``request`` instance; if ``request`` is provided, this should not be set. machine_type (str): Name of the machine type to return. This corresponds to the ``machine_type`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.compute_v1.types.MachineType: Represents a Machine Type resource. You can use specific machine types for your VM instances based on performance and pricing requirements. For more information, read Machine Types. (== resource_for {$api_version}.machineTypes ==) """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project, zone, machine_type]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") # Minor optimization to avoid making a copy if the user passes # in a compute.GetMachineTypeRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, compute.GetMachineTypeRequest): request = compute.GetMachineTypeRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project is not None: request.project = project if zone is not None: request.zone = zone if machine_type is not None: request.machine_type = machine_type # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get] # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
def __call__( self, request: compute.GetMachineTypeRequest, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.MachineType: r"""Call the get method over HTTP. Args: request (~.compute.GetMachineTypeRequest): The request object. A request message for MachineTypes.Get. See the method description for details. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.MachineType: Represents a Machine Type resource. You can use specific machine types for your VM instances based on performance and pricing requirements. For more information, read Machine Types. """ http_options = [ { "method": "get", "uri": "/compute/v1/projects/{project}/zones/{zone}/machineTypes/{machine_type}", }, ] request_kwargs = compute.GetMachineTypeRequest.to_dict(request) transcoded_request = path_template.transcode(http_options, **request_kwargs) uri = transcoded_request["uri"] method = transcoded_request["method"] # Jsonify the query params query_params = json.loads( compute.GetMachineTypeRequest.to_json( compute.GetMachineTypeRequest(transcoded_request["query_params"]), including_default_value_fields=False, use_integers_for_enums=False, ) ) query_params.update(self._get_unset_required_fields(query_params)) # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = getattr(self._session, method)( # Replace with proper schema configuration (http/https) logic "https://{host}{uri}".format(host=self._host, uri=uri), timeout=timeout, headers=headers, params=rest_helpers.flatten_query_params(query_params), ) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.MachineType.from_json( response.content, ignore_unknown_fields=True )