def test_create_log_metric(self): # Setup Expected Response name = 'name3373707' description = 'description-1724546052' filter_ = 'filter-1274492040' value_extractor = 'valueExtractor2047672534' expected_response = { 'name': name, 'description': description, 'filter': filter_, 'value_extractor': value_extractor } expected_response = logging_metrics_pb2.LogMetric(**expected_response) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch('google.api_core.grpc_helpers.create_channel') with patch as create_channel: create_channel.return_value = channel client = logging_v2.MetricsServiceV2Client() # Setup Request parent = client.project_path('[PROJECT]') metric = {} response = client.create_log_metric(parent, metric) assert expected_response == response assert len(channel.requests) == 1 expected_request = logging_metrics_pb2.CreateLogMetricRequest( parent=parent, metric=metric) actual_request = channel.requests[0][1] assert expected_request == actual_request
def test_create_log_metric(self): # Setup Expected Response name = "name3373707" description = "description-1724546052" filter_ = "filter-1274492040" value_extractor = "valueExtractor2047672534" expected_response = { "name": name, "description": description, "filter": filter_, "value_extractor": value_extractor, } expected_response = logging_metrics_pb2.LogMetric(**expected_response) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = logging_v2.MetricsServiceV2Client() # Setup Request parent = client.project_path("[PROJECT]") metric = {} response = client.create_log_metric(parent, metric) assert expected_response == response assert len(channel.requests) == 1 expected_request = logging_metrics_pb2.CreateLogMetricRequest( parent=parent, metric=metric) actual_request = channel.requests[0][1] assert expected_request == actual_request
def create_log_metric( self, parent, metric, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Creates a logs-based metric. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.MetricsServiceV2Client() >>> >>> parent = client.project_path('[PROJECT]') >>> >>> # TODO: Initialize `metric`: >>> metric = {} >>> >>> response = client.create_log_metric(parent, metric) Args: parent (str): The resource name of the project in which to create the metric: :: "projects/[PROJECT_ID]" The new metric must be provided in the request. metric (Union[dict, ~google.cloud.logging_v2.types.LogMetric]): The new logs-based metric, which must not have an identifier that already exists. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.logging_v2.types.LogMetric` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will be retried using a default configuration. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.logging_v2.types.LogMetric` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "create_log_metric" not in self._inner_api_calls: self._inner_api_calls[ "create_log_metric"] = google.api_core.gapic_v1.method.wrap_method( self.transport.create_log_metric, default_retry=self._method_configs["CreateLogMetric"]. retry, default_timeout=self._method_configs["CreateLogMetric"]. timeout, client_info=self._client_info, ) request = logging_metrics_pb2.CreateLogMetricRequest( parent=parent, metric=metric, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("parent", parent)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header) metadata.append(routing_metadata) return self._inner_api_calls["create_log_metric"](request, retry=retry, timeout=timeout, metadata=metadata)
def create_log_metric(self, parent, metric, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Creates a logs-based metric. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.MetricsServiceV2Client() >>> >>> parent = client.project_path('[PROJECT]') >>> metric = {} >>> >>> response = client.create_log_metric(parent, metric) Args: parent (str): The resource name of the project in which to create the metric: :: \"projects/[PROJECT_ID]\" The new metric must be provided in the request. metric (Union[dict, ~google.cloud.logging_v2.types.LogMetric]): The new logs-based metric, which must not have an identifier that already exists. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.logging_v2.types.LogMetric` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.logging_v2.types.LogMetric` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ if metadata is None: metadata = [] metadata = list(metadata) request = logging_metrics_pb2.CreateLogMetricRequest( parent=parent, metric=metric, ) return self._create_log_metric(request, retry=retry, timeout=timeout, metadata=metadata)