def main(input_uri, encoding, sample_rate, language_code='en-US'):
    service = cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(cloud_speech.SyncRecognizeRequest(
        config=cloud_speech.RecognitionConfig(
            # There are a bunch of config options you can specify. See
            # https://goo.gl/KPZn97 for the full list.
            encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
            sample_rate=sample_rate,  # the rate in hertz
            # See https://g.co/cloud/speech/docs/languages for a list of
            # supported languages.
            language_code=language_code,  # a BCP-47 language tag
        ),
        audio=cloud_speech.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)

    # Print the recognition result alternatives and confidence scores.
    for result in response.results:
        print('Result:')
        for alternative in result.alternatives:
            print(u'  ({}): {}'.format(
                alternative.confidence, alternative.transcript))
示例#2
0
def main(input_uri, encoding, sample_rate, language_code='en-US'):
    service = cloud_speech.beta_create_Speech_stub(
        make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(
        cloud_speech.SyncRecognizeRequest(
            config=cloud_speech.RecognitionConfig(
                # There are a bunch of config options you can specify. See
                # https://goo.gl/KPZn97 for the full list.
                encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
                sample_rate=sample_rate,  # the rate in hertz
                # See https://g.co/cloud/speech/docs/languages for a list of
                # supported languages.
                language_code=language_code,  # a BCP-47 language tag
            ),
            audio=cloud_speech.RecognitionAudio(uri=input_uri, )),
        DEADLINE_SECS)

    # Print the recognition result alternatives and confidence scores.
    for result in response.results:
        print('Result:')
        for alternative in result.alternatives:
            print(u'  ({}): {}'.format(alternative.confidence,
                                       alternative.transcript))
def main():
    with cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443)) as service:

        # stoprequest is event object which is set in `listen_print_loop`
        # to indicate that the trancsription should be stopped.
        #
        # The `_fill_buffer` thread checks this object, and closes
        # the `audio_stream` once it's set.
        stoprequest = threading.Event()

        # For streaming audio from the microphone, there are three threads.
        # First, a thread that collects audio data as it comes in
        with record_audio(RATE, CHUNK, stoprequest) as buffered_audio_data:
            # Second, a thread that sends requests with that data
            requests = request_stream(buffered_audio_data, RATE)
            # Third, a thread that listens for transcription responses
            recognize_stream = service.StreamingRecognize(
                requests, DEADLINE_SECS)

            # Exit things cleanly on interrupt
            signal.signal(signal.SIGINT, lambda *_: recognize_stream.cancel())

            # Now, put the transcription responses to use.
            try:
                listen_print_loop(recognize_stream, stoprequest)

                recognize_stream.cancel()
            except face.CancellationError:
                # This happens because of the interrupt handler
                pass
示例#4
0
def run_recognition_loop():
    global frames
    global silent_frames
    global is_recording
    global should_finish_stream

    if len(silent_frames) > 4:
        silent_frames = silent_frames[-4:]

    while not is_recording:
        time.sleep(args.frame_seconds // 4)

        if len(frames) > 4:
            for frame_index in range(4):
                data = frames[frame_index]
                rms = audioop.rms(data, 2)
                decibel = 20 * math.log10(rms) if rms > 0 else 0
                if decibel < args.silent_decibel:
                    silent_frames += frames[0:frame_index+1]
                    del frames[0:frame_index + 1]
                    return

            is_recording = True
            frames = silent_frames + frames
            silent_frames = []

    with cloud_speech_pb2.beta_create_Speech_stub(make_channel(args.host, args.ssl_port)) as service:
        try:
            listen_loop(service.StreamingRecognize(request_stream(), args.deadline_seconds))
            printr(" ".join((bold(recognition_result.transcription), "	", "confidence: ", str(int(recognition_result.confidence * 100)), "%")))
            print()
        except Exception as e:
            print(str(e))
示例#5
0
文件: mic.py 项目: jphacks/KB_1807
def run_recognition_loop():
    global frames
    global silent_frames
    global is_recording
    global should_finish_stream

    if len(silent_frames) > 4:
        silent_frames = silent_frames[-4:]
        #print ("silent_frames:",silent_frames)

    while not is_recording:
        #print("---sleep---")
        time.sleep(args.frame_seconds // 4)  #処理を一時停止する
        #print("----on-----")
        #なんのif文かわからん
        if len(frames) > 2:
            for frame_index in range(4):
                data = frames[frame_index]
                rms = audioop.rms(data, 2)
                decibel = 20 * math.log10(rms) if rms > 0 else 0
                if decibel < args.silent_decibel:
                    silent_frames += frames[0:frame_index + 1]
                    del frames[0:frame_index + 1]  #リストの部分を削除
                    return

            is_recording = True
            frames = silent_frames + frames
            silent_frames = []

    #音声をテキストにする
    with cloud_speech_pb2.beta_create_Speech_stub(
            make_channel(args.host,
                         args.ssl_port)) as service:  #このフォルダをservice関数に入れる
        try:
            #ここで録音して変換している
            print("処理中")
            listen_loop(
                service.StreamingRecognize(request_stream(),
                                           args.deadline_seconds))
            #print("service:",service.StreamingRecognize(request_stream(), args.deadline_seconds))
            #最終的な結果はここ
            printr(" ".join((bold(recognition_result.transcription))))  #"	",
            #"confidence: ", str(int(recognition_result.confidence * 100)), "%",
            #"time: ",time.strftime("%H:%M:%S"))))
            list = {
                "ID": ID,
                "trans": recognition_result.transcription,
                "confidence": recognition_result.confidence * 100,
                "time": time.strftime("%H:%M:%S"),
                "finish": finish
            }
            json_data = json.dumps(list)
            response = requests.post(
                'https://2dhdoj4j8c.execute-api.ap-northeast-1.amazonaws.com:443/dev/datadump',
                json_data)
            #pprint.pprint(response.json())
            print()
        except Exception as e:
            print(str(e))
def main():
    stop_audio = threading.Event()
    with cloud_speech.beta_create_Speech_stub(make_channel("speech.googleapis.com", 443)) as service:
        try:
            listen_print_loop(service.StreamingRecognize(request_stream(stop_audio), DEADLINE_SECS))
        finally:
            # Stop the request stream once we're done with the loop - otherwise
            # it'll keep going in the thread that the grpc lib makes for it..
            stop_audio.set()
示例#7
0
 def threaded_listen():
     with cloud_speech.beta_create_Speech_stub(self.google_grpc_channel('speech.googleapis.com', 443)) as service:
         with source as s:
             while self._running_voice:
                 try: # listen for 1 second, then check again if the stop function has been called
                     init_buff = self.listen_trigger(s, 1)
                 except WaitTimeoutError: # listening timed out, just try again
                     pass
                 else:
                     self.g_stream_loop(service, source, init_buff, callback)
示例#8
0
def main():
    stop_audio = threading.Event()
    with cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443)) as service:
        try:
            listen_print_loop(
                service.StreamingRecognize(request_stream(stop_audio),
                                           DEADLINE_SECS))
        finally:
            # Stop the request stream once we're done with the loop - otherwise
            # it'll keep going in the thread that the grpc lib makes for it..
            stop_audio.set()
示例#9
0
    def __init__(self):

        self.pub_transcript = rospy.Publisher('result_transcript', ResultTranscript, queue_size=5)
        self.pub_start_speech = rospy.Publisher('start_of_speech', Empty, queue_size=10)
        self.pub_end_speech = rospy.Publisher('end_of_speech', Empty, queue_size=10)

        self.is_start_audio = False
        self.is_start_speech = False
        self.is_stop_audio = True

        self.stop_audio = threading.Event()
        with cloud_speech.beta_create_Speech_stub(self.make_channel('speech.googleapis.com', 443)) as self.service:
            self.t1 = threading.Thread(target=self.listen_print_loop)
            self.t1.start()
def main(input_uri, encoding, sample_rate, language_code='en-US'):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    operation = service.AsyncRecognize(cloud_speech_pb2.AsyncRecognizeRequest(
        config=cloud_speech_pb2.RecognitionConfig(
            # There are a bunch of config options you can specify. See
            # https://goo.gl/KPZn97 for the full list.
            encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
            sample_rate=sample_rate,  # the rate in hertz
            # See https://g.co/cloud/speech/docs/languages for a list of
            # supported languages.
            language_code=language_code,  # a BCP-47 language tag
        ),
        audio=cloud_speech_pb2.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)

    # Print the longrunning operation handle.
    print(operation)

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = operation.name

    while True:
        # Give the server a few seconds to process.
        print('Waiting for server processing...')
        time.sleep(1)
        operation = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name),
            DEADLINE_SECS)

        if operation.done:
            break

    response = cloud_speech_pb2.AsyncRecognizeResponse()
    operation.response.Unpack(response)
    # Print the recognition result alternatives and confidence scores.
    for result in response.results:
        print('Result:')
        for alternative in result.alternatives:
            print(u'  ({}): {}'.format(
                alternative.confidence, alternative.transcript))
示例#11
0
def main(input_uri, encoding, sample_rate):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.AsyncRecognize(cloud_speech_pb2.AsyncRecognizeRequest(
        config=cloud_speech_pb2.RecognitionConfig(
            # There are a bunch of config options you can specify. See
            # https://goo.gl/KPZn97 for the full list.
            encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
            sample_rate=sample_rate,  # the rate in hertz
            # See
            # https://g.co/cloud/speech/docs/best-practices#language_support
            # for a list of supported languages.
            language_code='fi-FI',  # a BCP-47 language tag
        ),
        audio=cloud_speech_pb2.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)

    # Print the longrunning operation handle.
    print >> sys.stderr, response

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = response.name

    while True:
        # Give the server a few seconds to process.
        print >> sys.stderr, 'Waiting for server processing...'
        time.sleep(1)
        # Get the long running operation with response.
        response = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name),
            DEADLINE_SECS)

        if response.done:
            break

    # Print the recognition results.
    results = cloud_speech_pb2.AsyncRecognizeResponse()
    response.response.Unpack(results)
    for result in results.results:
	for alternative in result.alternatives:
            print(('"{}",{}').format(alternative.transcript.encode('utf-8'), alternative.confidence))
def main(input_uri, encoding, sample_rate):
    service = cloud_speech.beta_create_Speech_stub(
        make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(
        cloud_speech.SyncRecognizeRequest(
            config=cloud_speech.RecognitionConfig(
                encoding=encoding,
                sample_rate=sample_rate,
            ),
            audio=cloud_speech.RecognitionAudio(uri=input_uri, )),
        DEADLINE_SECS)
    # Print the recognition results.
    print(response.results)
示例#13
0
def main(input_uri, encoding, sample_rate, language_code='en-US'):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    operation = service.AsyncRecognize(
        cloud_speech_pb2.AsyncRecognizeRequest(
            config=cloud_speech_pb2.RecognitionConfig(
                # There are a bunch of config options you can specify. See
                # https://goo.gl/KPZn97 for the full list.
                encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
                sample_rate=sample_rate,  # the rate in hertz
                # See https://g.co/cloud/speech/docs/languages for a list of
                # supported languages.
                language_code=language_code,  # a BCP-47 language tag
            ),
            audio=cloud_speech_pb2.RecognitionAudio(uri=input_uri, )),
        DEADLINE_SECS)

    # Print the longrunning operation handle.
    print(operation)

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = operation.name

    while True:
        # Give the server a few seconds to process.
        print('Waiting for server processing...')
        time.sleep(1)
        operation = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name), DEADLINE_SECS)

        if operation.done:
            break

    response = cloud_speech_pb2.AsyncRecognizeResponse()
    operation.response.Unpack(response)
    # Print the recognition result alternatives and confidence scores.
    for result in response.results:
        print('Result:')
        for alternative in result.alternatives:
            print(u'  ({}): {}'.format(alternative.confidence,
                                       alternative.transcript))
def main(input_uri, encoding, sample_rate):
    service = cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(cloud_speech.SyncRecognizeRequest(
        config=cloud_speech.RecognitionConfig(
            encoding=encoding,
            sample_rate=sample_rate,
        ),
        audio=cloud_speech.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)
    # Print the recognition results.
    print(response.results)
示例#15
0
def main():

	#メイン部分
	global queue #列
	global should_finish_stream

	preloading_process = Process(target=reading_audio_loop, args=[queue])
	preloading_process.start()

	while True:
		should_finish_stream = False

		with cloud_speech_pb2.beta_create_Speech_stub(make_channel(args.host, args.ssl_port)) as service:
			listen_loop(service.StreamingRecognize(request_stream(), args.deadline_seconds))
			if recognition_result.success:
				printr(" ".join((bold(recognition_result.transcription), "	", "confidence: ", str(int(recognition_result.confidence * 100)), "%")))
				print()
def main(input_uri, encoding, sample_rate):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.AsyncRecognize(cloud_speech_pb2.AsyncRecognizeRequest(
        config=cloud_speech_pb2.RecognitionConfig(
            # There are a bunch of config options you can specify. See
            # https://goo.gl/A6xv5G for the full list.
            encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
            sample_rate=sample_rate,  # the rate in hertz
            # See
            # https://g.co/cloud/speech/docs/best-practices#language_support
            # for a list of supported languages.
            language_code='en-US',  # a BCP-47 language tag
        ),
        audio=cloud_speech_pb2.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)

    # Print the longrunning operation handle.
    print(response)

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = response.name

    while True:
        # Give the server a few seconds to process.
        print('Waiting for server processing...')
        time.sleep(1)
        # Get the long running operation with response.
        response = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name),
            DEADLINE_SECS)

        if response.done:
            break

    # Print the recognition results.
    results = cloud_speech_pb2.AsyncRecognizeResponse()
    response.response.Unpack(results)
    print(results)
示例#17
0
    def run_recognition_loop(self):
        print("===start recognition")
        #if len(self.silent_frames) > 4:
        #    self.silent_frames = self.silent_frames[-4:]

        #変換を依頼している時には、
        #while not self.is_recording:
        while not self.should_finish_stream :

            #print(sys._getframe().f_code.co_name)
            time.sleep(self.frame_seconds // 4)

            if len(self.frames) == 0 :
                continue

            #音が入ってくるまで、解析処理を行わないようにする。
            data = self.frames[0]
            rms = audioop.rms(data, 2)
            decibel = 20 * math.log10(rms) if rms > 0 else 0
            #print("decibel", decibel)

            #音が入ってくるまで、処理を行わない。
            if decibel < self.silent_decibel:
                #print("pre frame len",len(self.frames))
                if len(self.frames) > 0 :
                    self.frames.pop(0)
                continue

            print(sys._getframe().f_code.co_name, "get sound. decibel=",decibel)
            self.is_recording = True
            self.frames = self.silent_frames + self.frames

            with cloud_speech_pb2.beta_create_Speech_stub(self.make_channel(self.host, self.ssl_port)) as service:
                try:
                    self.listen_loop(service.StreamingRecognize(self.request_stream(), self.deadline_seconds))

                    #処理結果が終了した時だけ出力するようにした
                    if self.recognition_result.is_final :
                        printr(" ".join((bold(self.recognition_result.transcription), "    ", "confidence: ", str(int(self.recognition_result.confidence * 100)), "%")))
                        self.recognition_result.is_final = False

                    #with open('result.txt', 'w') as f:
                    #    f.write(recognition_result.transcription)
                except Exception as e:
                    print(str(e))
def main(input_uri, encoding, sample_rate):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.AsyncRecognize(cloud_speech_pb2.AsyncRecognizeRequest(
        config=cloud_speech_pb2.RecognitionConfig(
            encoding=encoding,
            sample_rate=sample_rate,
        ),
        audio=cloud_speech_pb2.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)

    # Print the longrunning operation handle.
    print(response)

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = response.name

    while True:
        # Give the server a few seconds to process.
        print('Waiting for server processing...')
        time.sleep(1)
        # Get the long running operation with response.
        response = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name),
            DEADLINE_SECS)

        if response.done:
            break

    # Print the recognition results.
    results = cloud_speech_pb2.AsyncRecognizeResponse()
    response.response.Unpack(results)
    print(results)
def main(input_uri, encoding, sample_rate):
    service = cloud_speech.beta_create_Speech_stub(
        make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(
        cloud_speech.SyncRecognizeRequest(
            config=cloud_speech.RecognitionConfig(
                # There are a bunch of config options you can specify. See
                # https://goo.gl/A6xv5G for the full list.
                encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
                sample_rate=sample_rate,  # the rate in hertz
                # See
                # https://g.co/cloud/speech/docs/best-practices#language_support
                # for a list of supported languages.
                language_code='en-US',  # a BCP-47 language tag
            ),
            audio=cloud_speech.RecognitionAudio(uri=input_uri, )),
        DEADLINE_SECS)
    # Print the recognition results.
    print(response.results)
def main(input_uri, encoding, sample_rate):
    channel = make_channel('speech.googleapis.com', 443)
    service = cloud_speech_pb2.beta_create_Speech_stub(channel)
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.AsyncRecognize(
        cloud_speech_pb2.AsyncRecognizeRequest(
            config=cloud_speech_pb2.RecognitionConfig(
                encoding=encoding,
                sample_rate=sample_rate,
            ),
            audio=cloud_speech_pb2.RecognitionAudio(uri=input_uri, )),
        DEADLINE_SECS)

    # Print the longrunning operation handle.
    print(response)

    # Construct a long running operation endpoint.
    service = operations_grpc_pb2.beta_create_Operations_stub(channel)

    name = response.name

    while True:
        # Give the server a few seconds to process.
        print('Waiting for server processing...')
        time.sleep(1)
        # Get the long running operation with response.
        response = service.GetOperation(
            operations_grpc_pb2.GetOperationRequest(name=name), DEADLINE_SECS)

        if response.done:
            break

    # Print the recognition results.
    results = cloud_speech_pb2.AsyncRecognizeResponse()
    response.response.Unpack(results)
    print(results)
示例#21
0
def main():
    with cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443)) as service:
        # For streaming audio from the microphone, there are three threads.
        # First, a thread that collects audio data as it comes in
        with record_audio(RATE, CHUNK) as buffered_audio_data:
            # Second, a thread that sends requests with that data
            requests = request_stream(buffered_audio_data, RATE)
            # Third, a thread that listens for transcription responses
            recognize_stream = service.StreamingRecognize(
                requests, DEADLINE_SECS)

            # Exit things cleanly on interrupt
            signal.signal(signal.SIGINT, lambda *_: recognize_stream.cancel())

            # Now, put the transcription responses to use.
            try:
                listen_print_loop(recognize_stream)

                recognize_stream.cancel()
            except face.CancellationError:
                # This happens because of the interrupt handler
                pass
def main():
    with cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443)) as service:
        # For streaming audio from the microphone, there are three threads.
        # First, a thread that collects audio data as it comes in
        with record_audio(RATE, CHUNK) as buffered_audio_data:
            # Second, a thread that sends requests with that data
            requests = request_stream(buffered_audio_data, RATE)
            # Third, a thread that listens for transcription responses
            recognize_stream = service.StreamingRecognize(
                requests, DEADLINE_SECS)

            # Exit things cleanly on interrupt
            signal.signal(signal.SIGINT, lambda *_: recognize_stream.cancel())

            # Now, put the transcription responses to use.
            try:
                listen_print_loop(recognize_stream)

                recognize_stream.cancel()
            except face.CancellationError:
                # This happens because of the interrupt handler
                pass
def main(input_uri, encoding, sample_rate):
    service = cloud_speech.beta_create_Speech_stub(
            make_channel('speech.googleapis.com', 443))
    # The method and parameters can be inferred from the proto from which the
    # grpc client lib was generated. See:
    # https://github.com/googleapis/googleapis/blob/master/google/cloud/speech/v1beta1/cloud_speech.proto
    response = service.SyncRecognize(cloud_speech.SyncRecognizeRequest(
        config=cloud_speech.RecognitionConfig(
            # There are a bunch of config options you can specify. See
            # https://goo.gl/A6xv5G for the full list.
            encoding=encoding,  # one of LINEAR16, FLAC, MULAW, AMR, AMR_WB
            sample_rate=sample_rate,  # the rate in hertz
            # See
            # https://g.co/cloud/speech/docs/best-practices#language_support
            # for a list of supported languages.
            language_code='en-US',  # a BCP-47 language tag
        ),
        audio=cloud_speech.RecognitionAudio(
            uri=input_uri,
        )
    ), DEADLINE_SECS)
    # Print the recognition results.
    print(response.results)
示例#24
0
 def service(self):
     service = cloud_speech.beta_create_Speech_stub(self.channel)
     return service
示例#25
0
                    # 音量が閾値より小さかったら,データを捨てループを抜ける ----
                    if decibel < DECIBEL_THRESHOLD:
                        frames_startbuf.append(frames[0:i + 1])
                        del frames[0:i + 1]
                        break

                    # 全フレームの音量が閾値を超えていたら,録音開始!! ----
                    # 更に,framesの先頭に,先頭バッファをプラス
                    # これをしないと「かっぱ」の「かっ」など,促音の前の音が消えてしまう
                    if i == START_FRAME_LEN - 1:
                        flag_RecordStart = True
                        frames = frames_startbuf + frames

        # googleサーバに接続 ############################
        print "\nconnecting ...."
        with cloud_speech.beta_create_Speech_stub(
                make_channel('speech.googleapis.com', 443)) as service:
            try:
                print "success to connect."
            except:
                print "connection error."

        # 録音開始後の処理 ###############################
        listen_print_loop(
            service.StreamingRecognize(request_stream(), DEADLINE_SECS))

        # 音声認識 繰り返しの終了判定 #####################
        if re.match(EXIT_WORD, recog_result):
            print('Exiting..')
            break

        # 音声認識繰り返ししない設定 ######################