示例#1
0
    def _fit_gp(X, covX, t):
        xx, xy, yy = covX[0, 0], covX[0, 1], covX[1, 1]

        # Perform hyper-parameter optimization with different
        # initial points and choose the GP with best model evidence
        theta0 = np.array((t.std(), sqrt(xx), sqrt(yy), xy, .01))

        from gp import GaussianProcess, sqexp2D_covariancef
        best_gp = GaussianProcess.fit(X, t, sqexp2D_covariancef, theta0)

        from sklearn.model_selection import ParameterSampler
        from scipy.stats import uniform
        grid = {
            'sigmaf': uniform(0.1 * t.std(), 10 * t.std()),
            'cov_xx': uniform(50, 2000),
            'cov_yy': uniform(50, 2000),
            'noise_prec': uniform(0.1, 10)
        }

        for i, sample in enumerate(ParameterSampler(grid, n_iter=500)):
            sys.stdout.write('iter: %d/500 evidence: %.4f\r' %
                             (i, best_gp.model_evidence()))
            sys.stdout.flush()

            theta0 = np.array((sample['sigmaf'], sample['cov_xx'],
                               sample['cov_yy'], 0, sample['noise_prec']))
            gp = GaussianProcess.fit(X, t, sqexp2D_covariancef, theta0)
            if gp.model_evidence() > best_gp.model_evidence():
                best_gp = gp

        return best_gp
示例#2
0
class BayesianOpt(object):

    def __init__(self, kernel):
        self.kernel_init = kernel
        self.gp = None
        self.X = []
        self.Y = []

    def init(self):
        self.gp = None
        self.X = []
        self.Y = []

    def train(self, x, y,
            doOptmization = False, params_min = None, params_max = None):

        self.X.append(x)
        self.Y.append(y)
        self.gp = GaussianProcess(self.X, self.Y, 
                self.kernel_init if len(self.X) == 1 else self.gp.kernel)
        if doOptmization:
            self.gp.optimize(params_min = params_min, params_max = params_max)

    def pick_next_input(self): 
        raise NotImplementedError("overwrite this")
示例#3
0
def predict(sa):
    idx = kdt.query(sa.T, k=K, return_distance=False)
    X_nn = Xtrain[idx, :].reshape(K, state_action_dim)
    Y_nn = Ytrain[idx, :].reshape(K, state_dim)

    if useDiffusionMaps:
        X_nn, Y_nn = reduction(sa, X_nn, Y_nn)

    m = np.zeros(state_dim)
    s = np.zeros(state_dim)

    for i in range(state_dim):
        if i == 0:
            gp_est = GaussianProcess(X_nn[:, :4],
                                     Y_nn[:, i],
                                     optimize=True,
                                     theta=None)
            theta = gp_est.cov.theta
        else:
            gp_est = GaussianProcess(X_nn[:, :4],
                                     Y_nn[:, i],
                                     optimize=False,
                                     theta=theta)
        m[i], s[i] = gp_est.predict(sa[:4].reshape(1, -1)[0])

    return m, s
示例#4
0
def experiment_kiss(dataset=PUMADYN32NM, m=100, proj_d=2, cov='covSEard', standardize=True, proj=None):
    assert proj in {None, 'norm', 'orth'}
    train_x, train_y, test_x, test_y = load_dataset(dataset)
    if standardize:
        scaler = StandardScaler()
        train_x = scaler.fit_transform(train_x)
        test_x = scaler.transform(test_x)

    n, d = train_x.shape
    print 'Train KISS with {} data points and {} dimension'.format(n, d)
    # get GP functionality
    gp = GaussianProcess()
    # subtract mean
    train_y -= np.mean(train_y)
    test_y -= np.mean(train_y)
    # projection matrix
    P = np.random.normal(size=(proj_d, d))
    # initialization
    hyp_lik = float(0.5 * np.log(np.var(train_y) / 4))
    if cov == 'covSEard':
        init_x = np.dot(train_x, P.T)
        init_ell = np.log((np.max(init_x, axis=0) - np.min(init_x, axis=0)) / 2)
        hyp_cov = np.append(init_ell, [0.5 * np.log(np.var(train_y))])
    else:
        hyp_cov = np.asarray([np.log(5), 0.5 * np.log(np.var(train_y))])

    hyp_old = {'mean': [], 'lik': hyp_lik, 'cov': hyp_cov, 'proj': P}
    opt = {'cg_maxit': 500, 'cg_tol': 1e-5}
    if proj is not None:
        opt['proj'] = proj
    hyp = gp.train_kiss(train_x, train_y.reshape(-1, 1), k=m, hyp=hyp_old, opt=opt, n_iter=100)
    test_mean, test_var = gp.predict_kiss(train_x, train_y.reshape(-1, 1), k=m, xstar=test_x, opt=opt, hyp=hyp, cov=cov)

    print 'KISS error:'
    print_error(test_y, test_mean)
示例#5
0
def batch_predict(SA):
    sa = np.mean(SA, 0)
    idx = kdt.query(sa.reshape(1, -1), k=K, return_distance=False)
    X_nn = Xtrain[idx, :].reshape(K, state_action_dim)
    Y_nn = Ytrain[idx, :].reshape(K, state_dim)

    if useDiffusionMaps:
        X_nn, Y_nn = reduction(sa, X_nn, Y_nn)

    m = np.zeros((SA.shape[0], state_dim))
    s = np.zeros((SA.shape[0], state_dim))
    for i in range(state_dim):
        if i == 0:
            gp_est = GaussianProcess(X_nn[:, :4],
                                     Y_nn[:, i],
                                     optimize=False,
                                     theta=None)
            theta = gp_est.cov.theta
        else:
            gp_est = GaussianProcess(X_nn[:, :4],
                                     Y_nn[:, i],
                                     optimize=False,
                                     theta=theta)
        mm, ss = gp_est.batch_predict(SA[:, :4])
        m[:, i] = mm
        s[:, i] = np.diag(ss)

    return m, s
    def one_predict(self, sa):
        Theta, _ = self.get_theta(
            sa)  # Get hyper-parameters for this query point

        K = self.K

        idx = self.kdt.query(sa.reshape(1, -1), k=K, return_distance=False)
        X_nn = self.Xtrain[idx, :].reshape(K, self.state_action_dim)
        Y_nn = self.Ytrain[idx, :].reshape(K, self.state_dim)

        if useDiffusionMaps:
            X_nn, Y_nn = self.reduction(sa, X_nn, Y_nn)

        ds_next = np.zeros((self.state_dim, ))
        std_next = np.zeros((self.state_dim, ))
        for i in range(self.state_dim):
            gp_est = GaussianProcess(X_nn[:, :self.state_action_dim],
                                     Y_nn[:, i],
                                     optimize=False,
                                     theta=Theta[i],
                                     algorithm='Matlab')
            mm, vv = gp_est.predict(sa[:self.state_action_dim])
            ds_next[i] = mm
            std_next[i] = np.sqrt(vv)

        s_next = sa[:self.
                    state_dim] + ds_next  #np.random.normal(ds_next, std_next)
        if self.state_dim == 5:
            s_next[4] += 1.0 if s_next[4] < 0.0 else 0.0
            s_next[4] -= 1.0 if s_next[4] > 1.0 else 0.0

        return s_next
    def batch_predict(self, SA):
        sa = np.mean(SA, 0)
        # Theta, K = self.get_theta(sa) # Get hyper-parameters for this query point

        K = 1

        idx = self.kdt.query(sa.reshape(1, -1), k=K, return_distance=False)
        X_nn = self.Xtrain[idx, :].reshape(K, self.state_action_dim)
        Y_nn = self.Ytrain[idx, :].reshape(K, self.state_dim)

        if useDiffusionMaps:
            X_nn, Y_nn = self.reduction(sa, X_nn, Y_nn)

        dS_next = np.zeros((SA.shape[0], self.state_dim))
        std_next = np.zeros((SA.shape[0], self.state_dim))
        for i in range(self.state_dim):
            gp_est = GaussianProcess(X_nn[:, :self.state_action_dim],
                                     Y_nn[:, i],
                                     optimize=True,
                                     theta=None,
                                     algorithm='Matlab')
            mm, vv = gp_est.batch_predict(SA[:, :self.state_action_dim])
            dS_next[:, i] = mm
            std_next[:, i] = np.sqrt(np.diag(vv))

        S_next = SA[:, :self.
                    state_dim] + dS_next  #np.random.normal(dS_next, std_next)

        return S_next
示例#8
0
def example_1d():
    kern = Matern23(1, l=0.2, noise=0.01)
    cov = np.zeros((1, 1))
    X = [(np.array(e), cov) for e in [[0.0], [0.3], [1.0]]]
    Y = [5.0, 7.0, 6.0]
    gp = GaussianProcess(X, Y, kern)
    gp.show(N_grid=200, bmin=-5, bmax=5)
    plt.show()
示例#9
0
    def train(self, x, y,
            doOptmization = False, params_min = None, params_max = None):

        self.X.append(x)
        self.Y.append(y)
        self.gp = GaussianProcess(self.X, self.Y, 
                self.kernel_init if len(self.X) == 1 else self.gp.kernel)
        if doOptmization:
            self.gp.optimize(params_min = params_min, params_max = params_max)
示例#10
0
def one_predict(sa, X, Y, kdt, K=100):
    state_dim = 4

    idx = kdt.query(sa.reshape(1, -1), k=K, return_distance=False)
    X_nn = X[idx, :].reshape(K, state_dim + 2)
    Y_nn = Y[idx, :].reshape(K, state_dim)

    ds_next = np.zeros((state_dim, ))
    std_next = np.zeros((state_dim, ))
    try:
        for i in range(state_dim):
            if i == 0:
                gp_est = GaussianProcess(X_nn[:, :state_dim],
                                         Y_nn[:, i],
                                         optimize=True,
                                         theta=None)
                Theta = gp_est.cov.theta
            else:
                gp_est = GaussianProcess(X_nn[:, :state_dim],
                                         Y_nn[:, i],
                                         optimize=False,
                                         theta=Theta)
            mm, vv = gp_est.predict(sa[:state_dim])
            ds_next[i] = mm
            std_next[i] = np.sqrt(np.diag(vv))
    except:
        print "pass"
        return np.array([-1, -1, -1, -1]), np.array([-1, -1, -1, -1])

    # SKlearn
    # for i in range(state_dim):
    #     gp_est = GaussianProcessRegressor(n_restarts_optimizer=9)
    #     gp_est.fit(X_nn[:,:state_dim], Y_nn[:,i])
    #     mm, vv = gp_est.predict(sa[:state_dim].reshape(1,-1), return_std=True)
    #     ds_next[i] = mm
    #     std_next[i] = vv#np.sqrt(np.diag(vv))

    # GPy
    # for i in range(state_dim):
    #     kernel = GPy.kern.RBF(input_dim=state_dim, variance=1., lengthscale=1.)
    #     gp_est = GPy.models.GPRegression(X_nn[:,:state_dim], Y_nn[:,i].reshape(-1,1), kernel)

    #     gp_est.optimize(messages=False)
    #     # m.optimize_restarts(num_restarts = 10)

    #     mm, vv = gp_est.predict(sa[:state_dim].reshape(1,state_dim))
    #     ds_next[i] = mm
    #     std_next[i] = np.sqrt(np.diag(vv))

    s_next = sa[:4] + ds_next

    return s_next, std_next, X_nn
示例#11
0
    def test_cpu_gpu(self):
        C = torch.tensor([1.0])
        l = torch.rand(5)
        X = torch.randn(10, 5)
        y = torch.randn(10, 1)
        Y = torch.randn(10, 5)
        X1 = torch.randn(2, 5)
        matern = Matern52(C, l)
        d2matern = Deriv2Matern52(C, l)
        gp1 = GaussianProcess(ZeroScalarMean(), matern, 1e-2)
        gp2 = GaussianProcess(ZeroVectorMean(), d2matern, 1e-2)

        self.assertTrue(check_device(gp1, X, y, X1))
        self.assertTrue(check_device(gp2, X, Y, X1))
示例#12
0
    def _fit_gp(X, covX, t):
        xx, xy, yy = covX[0,0], covX[0,1], covX[1,1]

        # Perform hyper-parameter optimization with different
        # initial points and choose the GP with best model evidence
        theta0 = np.array(( t.std(), sqrt(xx), sqrt(yy), xy, 10. ))
        best_gp = GaussianProcess.fit(X, t, sqexp2D_covariancef, theta0)

        for tau in xrange(50, 800, 100):
            theta0 = np.array(( t.std(), tau, tau, 0, 10. ))
            gp = GaussianProcess.fit(X, t, sqexp2D_covariancef, theta0)
            if gp.model_evidence() > best_gp.model_evidence():
                best_gp = gp

        return best_gp
示例#13
0
def make_gp():
    gp = GaussianProcess(
        lambda x, y, params: partial(periodic, params=params)
        (x, y) + params["ratio"] * partial(rbf, params=params)(x, y),
        sigma=0.03,
    )
    return gp
示例#14
0
文件: tests.py 项目: dfm/dfm-ml
class TestGP:
    def setUp(self):
        self.gp = GaussianProcess()

    def test_sparse(self):
        N = 1000
        x = 1000*np.random.rand(N)
        y = np.sin(x) + 0.1*np.random.randn(N)

        # do it using dense algebra
        Kxx = self.gp.K(x,x).todense()
        alpha = np.linalg.solve(Kxx,y)

        # sparse algebra
        self.gp.fit(x,y)
        assert np.linalg.norm(alpha-self.gp._alpha) < 1e-10
示例#15
0
def example_2d():
    kern = RBF(dim=2, l=0.3, noise=0.01)
    cov = np.zeros((2, 2))
    X = [np.array(e) for e in [[0, 0.0], [0.3, 0.7], [0.6, 0.2], [1.0, 1.0]]]
    Y = [2, 3, -2, 1]
    gp = GaussianProcess(X, Y, kern)
    return gp
示例#16
0
def example_3d():
    kern = RBF(dim=3, l=0.3, noise=0.01)
    cov = np.zeros((3, 3))
    X = [(np.array(e, dtype=float), cov)
         for e in [[0, 0, 0], [0.3, 0.7, -0.2], [0.6, 0.2, -0.8],
                   [0.3, 1.0, 1.0]]]
    Y = [2, 3, -2, 1]
    gp = GaussianProcess(X, Y, kern)
    return gp
    def batch_predict_iterative(self, SA):

        S_next = []
        while SA.shape[0]:
            sa = np.copy(SA[np.random.randint(SA.shape[0]), :])
            Theta, K = self.get_theta(
                sa)  # Get hyper-parameters for this query point
            D, idx = self.kdt.query(sa.reshape(1, -1),
                                    k=K,
                                    return_distance=True)
            r = np.max(D) * 1.1
            X_nn = self.Xtrain[idx, :].reshape(K, self.state_action_dim)
            Y_nn = self.Ytrain[idx, :].reshape(K, self.state_dim)

            neigh = NearestNeighbors(radius=r)
            neigh.fit(SA)
            idx_local = neigh.radius_neighbors(sa.reshape(1, -1),
                                               return_distance=False)[0]
            SA_local = np.copy(SA[idx_local, :])
            SA = np.delete(SA, idx_local, axis=0)

            if useDiffusionMaps:
                X_nn, Y_nn = self.reduction(sa, X_nn, Y_nn)

            dS_next = np.zeros((SA_local.shape[0], self.state_dim))
            std_next = np.zeros((SA_local.shape[0], self.state_dim))
            for i in range(self.state_dim):
                gp_est = GaussianProcess(X_nn[:, :self.state_action_dim],
                                         Y_nn[:, i],
                                         optimize=False,
                                         theta=Theta[i],
                                         algorithm='Matlab')
                mm, vv = gp_est.batch_predict(
                    SA_local[:, :self.state_action_dim])
                dS_next[:, i] = mm
                std_next[:, i] = np.sqrt(np.diag(vv))

            S_next_local = SA_local[:, :self.state_dim] + np.random.normal(
                dS_next, std_next)

            for s in S_next_local:
                S_next.append(s)

        return np.array(S_next)
    def test_basic(self):
        """
        1. GP forward output is a mvNormal
        2. GP predict output is a set of normal distributions
        3. sample shape
        """
        C = torch.tensor([3.0])
        l = torch.rand(3)
        X1 = torch.randn(10, 3)
        X2 = torch.randn(2, 3)
        y1 = torch.randn(10, 1)
        y1prime = torch.randn(10, 3)

        scalar_kernels = [Matern52(C, l), RBF(C, l)]
        for k in scalar_kernels:
            gp = GaussianProcess(ZeroScalarMean(), k, 0.1)
            self.assertTrue(basic_test(gp, X1, y1, X2))
        
        vector_kernels = [Deriv2Matern52(C, l), Deriv2RBF(C, l)]
        for k in vector_kernels:
            gp = GaussianProcess(ZeroVectorMean(), k, 0.1)
            self.assertTrue(basic_test(gp, X1, y1prime, X2))
示例#19
0
def one_predict(sa, X, Y, kdt, K=100):
    state_dim = 4

    idx = kdt.query(sa.reshape(1, -1), k=K, return_distance=False)
    X_nn = X[idx, :].reshape(K, state_dim + 2)
    Y_nn = Y[idx, :].reshape(K, state_dim)

    ds_next = np.zeros((state_dim, ))
    std_next = np.zeros((state_dim, ))
    try:
        for i in range(state_dim):
            if i == 0:
                gp_est = GaussianProcess(X_nn[:, :state_dim],
                                         Y_nn[:, i],
                                         optimize=True,
                                         theta=None)
                Theta = gp_est.cov.theta
            else:
                gp_est = GaussianProcess(X_nn[:, :state_dim],
                                         Y_nn[:, i],
                                         optimize=False,
                                         theta=Theta)
            mm, vv = gp_est.predict(sa[:state_dim])
            ds_next[i] = mm
            std_next[i] = np.sqrt(np.diag(vv))
    except:
        print "pass"
        return np.array([-1, -1, -1, -1]), np.array([-1, -1, -1, -1])

    # for i in range(state_dim):
    #     gp_est = GaussianProcessRegressor(n_restarts_optimizer=9)
    #     gp_est.fit(X_nn[:,:state_dim], Y_nn[:,i])
    #     mm, vv = gp_est.predict(sa[:state_dim].reshape(1,-1), return_std=True)
    #     ds_next[i] = mm
    #     std_next[i] = vv#np.sqrt(np.diag(vv))

    s_next = sa[:4] + ds_next

    return s_next, std_next
示例#20
0
    def __init__(
        self,
        model,
        model_weight,
        model_bias,
        model_type,
        savedir,
        use_gp=True,
        sigma=1,
        r_loc=0.5,
        r_year=1.5,
        sigma_e=0.32,
        sigma_b=0.01,
        device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):

        self.savedir = savedir / model_type
        self.savedir.mkdir(parents=True, exist_ok=True)

        print(f'Using {device.type}')
        if device.type != 'cpu':
            model = model.cuda()

        self.model = model
        self.model_type = model_type
        self.model_weight = model_weight
        self.model_bias = model_bias

        self.device = device

        # for reproducability
        torch.manual_seed(42)
        torch.cuda.manual_seed_all(42)

        self.gp = None
        if use_gp:
            self.gp = GaussianProcess(sigma, r_loc, r_year, sigma_e, sigma_b)
    def test_statistics(self):
        """
        1. sample from GP and calculate mean and covariance
        """
        C = torch.tensor([3.0])
        l = torch.rand(3)
        X1 = torch.randn(10, 3)
        kernels = [Matern52(C, l), RBF(C, l)]

        for k in kernels:
            gp = GaussianProcess(ZeroScalarMean(), k, 0.0)
            margin = gp(X1)
            n_sample = 100000
            samples = margin.sample([n_sample])

            statistic_mean = torch.mean(samples, dim=0)
            logging.debug("mean:{}".format(statistic_mean))
            self.assertTrue(torch.allclose(statistic_mean, torch.zeros(10), atol=0.1))
            statistic_cov = samples.T @ samples / (n_sample-1)
            K = k(X1)
            logging.debug("Cov:{}".format(statistic_cov))
            self.assertTrue(torch.allclose(K, statistic_cov, atol=0.1))
示例#22
0
import math
import numpy as np

from gp import GaussianProcess, DotKernel
from gp import SMKernel


N_ROWS = 5
N_COLS = 50

X = np.matrix([1+(0.1*i)*j for j in range(N_ROWS) for i in range(1,N_COLS+1)]).reshape((N_ROWS,N_COLS))
y1 = np.matrix([(0.2*i) + np.random.normal(0,0.001,1)[0] for i in range(1,N_COLS+1)]).T
my_GP = GaussianProcess(SMKernel(N_ROWS, 1), X)
#my_GP = GaussianProcess(DotKernel(), X)
my_GP.add_task(y1)
x_star = np.matrix([1+1.5*j for j in range(N_ROWS)]).T
my_GP.gpr_make_prediction(my_GP.cov_function.INITIAL_GUESS, 0, x_star)

print my_GP.gpr_optimize(0, x_star)
print my_GP.mean, my_GP.variance
print my_GP.mlog_ML
示例#23
0
            kss = self.cov(Xs[idx], diag=True)  # self variance
            Ks = self.cov(Xs[idx], X)  # cross-covariances
            ms = self.mean(Xs[idx])

            al, sW, L, C = self.post.alpha, self.post.sW, self.post.L, self.post.C
            fmu[idx] = ms + np.dot(Ks, al)
            if L == None:
                fs2[idx] = kss + np.sum(Ks * np.dot(Ks, L), axis=1)
            else:
                V = np.linalg.solve(L, sW * Ks.T)
                fs2[idx] = kss - np.sum(V * V, axis=0)
            if ys == 0: yi = 0
            else: yi = ys[idx]
            lp[idx], ymu[idx], ys2[idx] = self.lik.pred(yi, fmu[idx], fs2[idx])
            na += nb

        return fmu, fs2, ymu, ys2, lp


if __name__ == "__main__":

    def f(x):
        return x * np.sin(x)

    X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
    y = f(X).ravel()
    Xs = np.atleast_2d(np.linspace(0, 10, 2007)).T
    from gp import GaussianProcess as gp
    gp = gp(mean=1.0 * one())
    post, nlZ, dnlZ = gp.inference(X, y, deriv=True)
    fmu, fs2, ymu, ys2, lp = gp.predict(X, y, Xs)
示例#24
0
N = 20

# Generate noisy data
x_data = np.random.uniform(0.4, 4, N).reshape(
    -1, 1)  # Generate N data points between 0.4 and 4
y_data = np.array([func(i, 0.2)
                   for i in x_data])  # Add Gaussian noise with std. of 0.2

# Compute real function
x_real = np.linspace(0, 6, 100).reshape(-1, 1)
y_real = np.array([func(i, 0) for i in x_real])

# Initiate GP with training data
gp_est = GaussianProcess(x_data,
                         y_data.reshape((-1, )),
                         optimize=True,
                         theta=None,
                         algorithm='Girard')

# Compute prediction for new data
x_new = np.linspace(0, 6, 100).reshape(-1, 1)
means = np.empty(100)
variances = np.empty(100)
for i in range(100):
    means[i], variances[i] = gp_est.predict(x_new[i])

# Plot
plt.plot(x_data, y_data, '+k', label='data')
plt.plot(x_real, y_real, '--k', label='true function')
msl = (means.reshape(1, -1)[0] - np.sqrt(variances))  #.reshape(-1,1)
msu = (means.reshape(1, -1)[0] + np.sqrt(variances))  #.reshape(-1,1)[0]
示例#25
0
from gp import GaussianProcess, sqexp2D_covariancef

if __name__ == "__main__":
    #--------------------------------------
    # sample training data
    x = np.array([
        np.array([i, j]) for i in np.arange(-1, 1, 0.2)
        for j in np.arange(-1, 1, 0.2)
    ])
    t = np.array(
        [r[0]**2 + r[1]**2 + r[0] * r[1] + 0.1 * np.random.randn() for r in x])
    t = t - np.mean(t)

    # Find the best set of hyper-parameters
    theta0 = [np.std(t), 1, 1, 0, 10]
    gp = GaussianProcess.fit(x, t, sqexp2D_covariancef, theta0)
    print gp.covf.theta

    # Plot predictions and samples from the Gaussian Process
    q = np.array([
        np.array([i, j]) for i in np.arange(-1.1, 1.1, 0.2)
        for j in np.arange(-1.1, 1.1, 0.2)
    ])
    mean, cov = gp.predict(q, cov=True)
    assert (mean == gp.predict(q)).all()

    sig_bnd = np.sqrt(np.diag(cov))

    mlab.points3d(x[:, 0], x[:, 1], t, t, scale_mode='none', scale_factor=0.01)

    pts = mlab.points3d(q[:, 0],
示例#26
0
    return x * np.sin(x) + np.random.normal(0, v)
    # return 3*x+4+np.random.normal(0, 0.01)


ax1 = plt.subplot2grid((3, 5), (0, 2), colspan=3, rowspan=2)

x_data = np.random.uniform(0, 4, 20).reshape(-1, 1)
y_data = np.array([func(i, 0.2) for i in x_data])  #
plt.plot(x_data, y_data, '+k')

x_real = np.linspace(0, 6, 100).reshape(-1, 1)
y_real = np.array([func(i, 0) for i in x_real])
plt.plot(x_real, y_real, '--k')

gp_est = GaussianProcess(x_data,
                         y_data.reshape((-1, )),
                         optimize=True,
                         theta=None)
gpup_est = UncertaintyPropagation(x_data,
                                  y_data.reshape((-1, )),
                                  optimize=True,
                                  theta=None,
                                  method=3)

x_n = np.array([3.0])  # The mean of a normal distribution
var_n = np.diag([
    0.2**2
])  # The covariance matrix (must be diagonal because of lazy programming)
m, s = gpup_est.predict(x_n, var_n)
# m, s = gp_est.predict(x_n)
print m, s
plt.errorbar(x_n, m, yerr=np.sqrt(s), ecolor='y')
示例#27
0
import math
import numpy as np

from gp import GaussianProcess, DotKernel
from gp import SMKernel

N_ROWS = 5
N_COLS = 100

X = np.matrix([(0.1*(1+i))**(1+j) for j in range(N_ROWS) for i in range(N_COLS)]).reshape((N_ROWS,N_COLS))
y1 = np.matrix([(0.1*(1+i)) for i in range(N_COLS)]).T
y2 = np.matrix([np.sin(0.1*(1+i)) for i in range(N_COLS)]).T
my_GP = GaussianProcess(SMKernel(N_ROWS, 1), X)
my_GP = GaussianProcess(DotKernel(), X)
my_GP.add_task(y1)
my_GP.add_task(y2)

x_star = np.matrix([3**(1+j) for j in range(N_ROWS)]).T
my_GP.gpr_make_prediction(my_GP.cov_function.INITIAL_GUESS, 0, x_star)

print my_GP.gpr_optimize(0, x_star)
print my_GP.mean, my_GP.variance
print my_GP.mlog_ML

my_GP.gpr_make_prediction(my_GP.cov_function.INITIAL_GUESS, 0, x_star)
print my_GP.mean, my_GP.variance

示例#28
0
def experiment1D():
    gp = GaussianProcess()
    # setup data
    n = 500
    m = 50
    f = lambda x: np.sin(x) * np.exp(-x**2 / 50)
    X = np.random.uniform(-10, 10, size=n)
    X = np.sort(X)
    y = f(X) + np.random.normal(0, 1, size=n)
    y -= np.mean(y)

    x_min, x_max = np.min(X), np.max(X)
    U = np.linspace(x_min, x_max, m).reshape(-1, 1)

    X = X.reshape(-1, 1)
    hyp_cov = np.asarray([np.log(1), np.log(2)])
    hyp_lik = float(np.log(1))
    hyp_old = {'mean': [], 'lik': hyp_lik, 'cov': hyp_cov}
    hyp = gp.train_exact(X, y.reshape(-1, 1), hyp_old)
    hyp_cov = hyp['cov'][0]
    sigmasq = np.exp(2 * hyp['lik'])
    kernel = SEiso()
    distill = Distillation(X=X,
                           y=y,
                           U=U,
                           kernel=kernel,
                           hyp=hyp_cov,
                           num_iters=10,
                           eta=5e-4,
                           sigmasq=sigmasq,
                           width=3,
                           use_kmeans=True,
                           optimizer='sgd')
    distill.grad_descent()
    distill.precompute(use_true_K=False)

    xx = np.linspace(x_min, x_max, 2 * n)
    mm_true, vv_true = gp.predict_exact(X,
                                        y.reshape(-1, 1),
                                        xx.reshape(-1, 1),
                                        hyp=hyp)

    mm = []
    vv = []

    opt = {'cg_maxit': 500, 'cg_tol': 1e-5}
    k = n / 2
    hyp = gp.train_kiss(X, y.reshape(-1, 1), k, hyp=hyp_old, opt=opt)
    mm_kiss, vv_kiss = gp.predict_kiss(X,
                                       y.reshape(-1, 1),
                                       xx.reshape(-1, 1),
                                       k,
                                       hyp=hyp,
                                       opt=opt)

    for xstar in xx:
        xstar = np.asarray([xstar])
        mstar, vstar = distill.predict(xstar, width=3)
        vv.append(vstar)
        mm.append(mstar)

    mm = np.asarray(mm).flatten()
    vv = np.asarray(vv).flatten()
    mm_kiss = np.asarray(mm_kiss).flatten()
    vv_kiss = np.asarray(vv_kiss).flatten()

    plt.fill_between(xx,
                     mm - np.sqrt(vv) * 2,
                     mm + np.sqrt(vv) * 2,
                     color='gray',
                     alpha=.5)
    plt.plot(xx, mm_true, color='y', lw=3, label='exact mean')
    plt.plot(xx, mm, color='r', lw=3, label='distill mean', ls='dotted')
    plt.plot(xx, mm_kiss, color='g', lw=3, label='kiss mean', ls=':')
    plt.plot(xx, f(xx), lw=3, label='true value', ls='dashed')
    plt.scatter(X, y, color='m', label='train data', marker='+')
    plt.xlim([x_min, x_max])
    plt.legend()
    plt.show()

    plt.plot(xx, vv_kiss, color='g', lw=3, label='kiss var', ls=':')
    plt.plot(xx, vv_true, color='y', lw=3, label='exact var')
    plt.plot(xx, vv, color='r', lw=3, label='distill var', ls='dotted')
    plt.xlim([x_min, x_max])
    plt.legend()
    plt.show()
示例#29
0
def show_1d(X,y,Xs,ym,ys):
    plt.fill(np.concatenate([Xs, Xs[::-1]]),
             np.concatenate([ym - 1.96*ys,(ym + 1.96*ys)[::-1]]),
             alpha=0.25, fc='k', ec='k', label='95% confidence interval')
    plt.plot(X,y,'b+',ms=10)
    plt.plot(Xs,ym,'b',lw=2)
    plt.grid()
    plt.xlabel('input X')
    plt.ylabel('output y')

def f(x): return x * np.sin(x)
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
y = f(X).ravel()
Xs = np.atleast_2d(np.linspace(0, 10, 2007)).T

from sklearn import gaussian_process
gp = gaussian_process.GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100)
gp.fit(X,y)
ymn,ys2 = gp.predict(Xs, eval_MSE=True); ysd = np.sqrt(ys2)

from gp import GaussianProcess as gp
gp = gp(X=X,y=y)
post = gp.inference(X,y)
fmu,fs2,ymu,ys2,lp = gp.predict(X,y,Xs)


f0 = plt.figure(0); plt.clf()
show_1d(X,y,Xs,ymn,ysd)
f1 = plt.figure(1); plt.clf()
show_1d(X,y,Xs,ymu,ys2)
示例#30
0
文件: tests.py 项目: dfm/dfm-ml
 def setUp(self):
     self.gp = GaussianProcess()
示例#31
0
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')

from gp import GaussianProcess
from gp.kernel import RBF

if __name__ == "__main__":
    kernel = RBF(1.0)
    gp = GaussianProcess(kernel).compile()

    x = np.arange(-5, 5, 0.1)
    plt.figure()
    num_samples = 10
    samples = gp.sample(x[:, np.newaxis], num_samples)
    for i in xrange(num_samples):
        plt.plot(x, samples[i])
    plt.show()

    gp.observe(np.array([1, 2])[:, np.newaxis], np.array([0, 1]))
    plt.figure()
    num_samples = 10
    samples = gp.sample(x[:, np.newaxis], num_samples)
    for i in xrange(num_samples):
        plt.plot(x, samples[i])
    plt.show()
示例#32
0
    def precompute_hyperp(self,
                          K=100,
                          K_manifold=-1,
                          sigma=-1,
                          dim=-1,
                          simORreal='sim',
                          discreteORcont='discrete'):
        print(
            '[data_load] One time pre-computation of GP hyper-parameters data - THIS WILL TAKE A WHILE...!!!!'
        )

        if K_manifold > 0:
            if self.dr == 'diff':
                from dr_diffusionmaps import DiffusionMap
                DR = DiffusionMap(sigma=sigma, embedding_dim=dim)
            elif self.dr == 'spec':
                from spectralEmbed import spectralEmbed
                DR = spectralEmbed(embedding_dim=dim)

        def reduction(sa, X, Y, K_manifold):
            inx = DR.ReducedClosestSetIndices(sa, X, k_manifold=K_manifold)

            return X[inx, :][0], Y[inx, :][0]

        from gp import GaussianProcess
        import pickle
        if extend_previous_opt and os.path.exists(
                self.path + self.prefix + 'opt_data_' + discreteORcont +
                self.postfix + '_k' + str(K) + '.obj'):
            with open(
                    self.path + self.prefix + 'opt_data_' + discreteORcont +
                    self.postfix + '_k' + str(K) + '.obj', 'rb') as f:
                SA_opt, theta_opt, K_opt, _ = pickle.load(f)
            print(
                '[data_load] Loaded precious optimized data with size %d...' %
                SA_opt.shape[0])
            SA_opt = list(SA_opt)
            theta_opt = list(theta_opt)
            K_opt = list(K_opt)
        else:
            SA_opt = []
            theta_opt = []
            K_opt = []
        # [theta_opt.append([]) for _ in range(self.state_dim)] # List for each dimension
        N = 4650
        for i in range(N):
            print(
                '[data_load] Computing hyper-parameters for data point %d out of %d.'
                % (i, N))
            sa = self.Xtrain[np.random.randint(self.Xtrain.shape[0]), :]
            best = {'k': 0, 'loglike': 1e9, 'theta': 0}
            for jj in range(1):
                Kcandidate = [
                    K
                ]  #range(2, 253, 50) if jj == 0 else range(max(best['k'] - 50, 2), best['k'] + 50, 10)
                for k in Kcandidate:
                    print('[data_load] Running with k = %d (i=%d)...' % (k, i))

                    try:
                        idx = self.kdt.query(sa.reshape(1, -1),
                                             k=k,
                                             return_distance=False)
                        X_nn = self.Xtrain[idx, :].reshape(
                            k, self.state_action_dim)
                        Y_nn = self.Ytrain[idx, :].reshape(k, self.state_dim)
                    except:
                        continue

                    if K_manifold > 0:
                        X_nn, Y_nn = reduction(sa, X_nn, Y_nn, K_manifold)

                    fail = False
                    Theta = []
                    LogLikeAvg = 0
                    for d in range(self.state_dim):
                        try:
                            gp_est = GaussianProcess(
                                X_nn[:, :self.state_action_dim],
                                Y_nn[:, d],
                                optimize=True,
                                theta=None)  # Optimize to get hyper-parameters
                        except:
                            print('[data_load] Singular!')
                            fail = True
                            break
                        Theta.append(gp_est.cov.theta)
                        LogLikeAvg += gp_est.cov.neg_log_marginal_likelihood_value
                    if fail:
                        continue

                    LogLikeAvg /= self.state_dim
                    if LogLikeAvg < best['loglike']:
                        best['loglike'] = LogLikeAvg
                        best['k'] = k
                        best['theta'] = Theta
            print "Best: k = ", best['k'], ", log-likelihood = ", best[
                'loglike']
            SA_opt.append(sa)
            theta_opt.append(best['theta'])
            K_opt.append(best['k'])
            print('[data_load] %d optimization points exist.' % len(SA_opt))

            if not (i % 50):
                self.SA_opt = np.array(SA_opt)
                self.theta_opt = np.array(theta_opt)
                self.K_opt = np.array(K_opt)

                self.opt_kdt = KDTree(SA_opt, leaf_size=20, metric='euclidean')

                with open(
                        self.path + self.prefix + 'opt_data_' +
                        discreteORcont + self.postfix + '_k' + str(K) + '.obj',
                        'wb') as f:
                    pickle.dump([
                        self.SA_opt, self.theta_opt, self.K_opt, self.opt_kdt
                    ], f)
                print('[data_load] Saved hyper-parameters data.')
示例#33
0

def f(x):
    return x * np.sin(x)


X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
y = f(X).ravel()
Xs = np.atleast_2d(np.linspace(0, 10, 2007)).T

from sklearn import gaussian_process
gp = gaussian_process.GaussianProcess(corr='cubic',
                                      theta0=1e-2,
                                      thetaL=1e-4,
                                      thetaU=1e-1,
                                      random_start=100)
gp.fit(X, y)
ymn, ys2 = gp.predict(Xs, eval_MSE=True)
ysd = np.sqrt(ys2)

from gp import GaussianProcess as gp
gp = gp(X=X, y=y)
post = gp.inference(X, y)
fmu, fs2, ymu, ys2, lp = gp.predict(X, y, Xs)

f0 = plt.figure(0)
plt.clf()
show_1d(X, y, Xs, ymn, ysd)
f1 = plt.figure(1)
plt.clf()
show_1d(X, y, Xs, ymu, ys2)
import numpy as np
from matplotlib import pyplot
from gp import GaussianProcess, sqexp1D_covariancef


if __name__ == "__main__":
    # --------------------------------------
    x = (np.random.random(100) - 0.5) * 2
    t = np.array(map(lambda a: a ** 2 + 0.05 * np.random.randn(), x))
    t = t - np.mean(t)

    # Find the best set of hyper-parameters
    theta0 = [np.std(t), 1, 10]
    gp = GaussianProcess.fit(x, t, sqexp1D_covariancef, theta0)

    # Plot predictions and samples from the Gaussian Process
    q = np.arange(-1.2, 1.2, 0.051)
    mean, cov = gp.predict(q, cov=True)
    assert (mean == gp.predict(q)).all()

    sig_bnd = np.sqrt(np.diag(cov))

    for s in np.random.multivariate_normal(mean, cov, 5):
        pyplot.plot(q, s, "y-")

    pyplot.plot(x, t, ".")
    pyplot.plot(q, mean, "r-")
    pyplot.plot(q, mean + 2 * sig_bnd, "k-")
    pyplot.plot(q, mean - 2 * sig_bnd, "k-")
    pyplot.show(block=True)
示例#35
0
import numpy as np
import tf

from controller import Controller
from geometry_msgs.msg import PoseStamped
from dynamixel_workbench_msgs.srv import SetPID
from object_detection.srv import ObjectDetection

from geometry_msgs.msg import Pose, Point, Quaternion

from gp import GaussianProcess

# Initialize controller
ctrl = Controller()
# Initialize GP
gp = GaussianProcess()
gp.fit_GP()
MIN_JOINT_MOTION_FOR_HAND_OVER = 0.1


# define state Idle
class Idle(smach.State):
    def __init__(self):
        smach.State.__init__(self, outcomes=['gotToolInput'])

    def execute(self, userdata):
        ctrl.open_gripper()
        # ctrl.set_camera_angles(ctrl.HOME_POS_CAMERA_01)
        ctrl.set_arm_joint_angles(ctrl.HOME_POS_MANIPULATOR_00)
        rospy.loginfo('Executing state IDLE')
示例#36
0
# Load training set
train = np.matrix(scipy.io.loadmat("/home/victor/Documents/MTL-GP/_data/sarcos_inv.mat")["sarcos_inv"])
# Inputs  (7 joint positions, 7 joint velocities, 7 joint accelerations)
Xtrain = train[:100, :21].T
# Outputs (7 joint torques)
Ytrain = normalize(train[:100, 21:23])[0]

# Load test set
test = np.matrix(scipy.io.loadmat("/home/victor/Documents/MTL-GP/_data/sarcos_inv_test.mat")["sarcos_inv_test"])
Xtest = test[:100, :21].T
Ytest = normalize(test[:100, 21:23])[0]

# my_GP = GaussianProcess(SMKernel(Xtrain.shape[0], 3), Xtrain)
# my_GP = GaussianProcess(DotKernel(), Xtrain)
my_GP = GaussianProcess(SEKernel(), Xtrain)
my_GP.add_task(Ytrain[:,0])
my_GP.add_task(Ytrain[:,1])
# Ytrain = my_GP.gpr_normalize()
x_star = Xtest[:, 0:100]
# my_GP.gpr_make_prediction(my_GP.cov_function.INITIAL_GUESS, [0, 1], x_star)

print my_GP.gpr_optimize([0,1], x_star)
# print my_GP.mean.T
# print Ytest.T
print np.mean(abs((my_GP.mean[:,0] - Ytest[:,0])))
print np.mean(abs((my_GP.mean[:,1] - Ytest[:,1])))
print my_GP.mlog_ML

'''
for i in range(10):
示例#37
0
        ymu,ys2 = np.zeros(ns),np.zeros(ns)
        lp = np.zeros(ns)
        while na<ns:
            idx = np.arange(na,min(na+nb,ns))
            kss = self.cov(Xs[idx],diag=True)                   # self variance
            Ks = self.cov(Xs[idx],X)                        # cross-covariances
            ms = self.mean(Xs[idx])
            
            al,sW,L,C = self.post.alpha,self.post.sW,self.post.L,self.post.C
            fmu[idx] = ms + np.dot(Ks,al)
            if L==None:
                fs2[idx] = kss + np.sum(Ks*np.dot(Ks,L),axis=1)
            else:
                V = np.linalg.solve(L,sW*Ks.T)
                fs2[idx] = kss - np.sum(V*V,axis=0)
            if ys==0: yi = 0
            else:     yi = ys[idx]
            lp[idx],ymu[idx],ys2[idx] = self.lik.pred(yi,fmu[idx],fs2[idx])
            na += nb

        return fmu,fs2,ymu,ys2,lp

if __name__ == "__main__":
    def f(x): return x * np.sin(x)
    X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
    y = f(X).ravel()
    Xs = np.atleast_2d(np.linspace(0, 10, 2007)).T
    from gp import GaussianProcess as gp
    gp = gp(mean=1.0*one())
    post,nlZ,dnlZ = gp.inference(X,y,deriv=True)
    fmu,fs2,ymu,ys2,lp = gp.predict(X,y,Xs)
示例#38
0
    ["sarcos_inv"])
# Inputs  (7 joint positions, 7 joint velocities, 7 joint accelerations)
Xtrain = train[:100, :21].T
# Outputs (7 joint torques)
Ytrain = normalize(train[:100, 21:23])[0]

# Load test set
test = np.matrix(
    scipy.io.loadmat("/home/victor/Documents/MTL-GP/_data/sarcos_inv_test.mat")
    ["sarcos_inv_test"])
Xtest = test[:100, :21].T
Ytest = normalize(test[:100, 21:23])[0]

# my_GP = GaussianProcess(SMKernel(Xtrain.shape[0], 3), Xtrain)
# my_GP = GaussianProcess(DotKernel(), Xtrain)
my_GP = GaussianProcess(SEKernel(), Xtrain)
my_GP.add_task(Ytrain[:, 0])
my_GP.add_task(Ytrain[:, 1])
# Ytrain = my_GP.gpr_normalize()
x_star = Xtest[:, 0:100]
# my_GP.gpr_make_prediction(my_GP.cov_function.INITIAL_GUESS, [0, 1], x_star)

print my_GP.gpr_optimize([0, 1], x_star)
# print my_GP.mean.T
# print Ytest.T
print np.mean(abs((my_GP.mean[:, 0] - Ytest[:, 0])))
print np.mean(abs((my_GP.mean[:, 1] - Ytest[:, 1])))
print my_GP.mlog_ML
'''
for i in range(10):
    x_star = Xtest[:, i]
示例#39
0
import scipy.io
import numpy as np
from gp import GaussianProcess, SMKernel, DotKernel, SEKernel
from gp import LogisticFunction
from numpy.random import normal as dnorm

means, sigma, N = [-6,0,2], 0.8, 30

X = np.matrix(
    np.concatenate(
        [dnorm(i, sigma, N) for i in means]
    )
)
# my_GP = GaussianProcess(DotKernel(), X, LogisticFunction())
my_GP = GaussianProcess(SEKernel(), X, LogisticFunction())
# my_GP = GaussianProcess(SMKernel(X.shape[0], 3), X, LogisticFunction())

y = np.matrix(
    [-1]*N + [1]*N + [-1]*N
).T
my_GP.add_task(y)

y2 = []
for i in range(3*N):
    if X[0,i] > 0:
        y2.append(1)
    else:
        y2.append(-1)
y2 = np.matrix(y2).T
my_GP.add_task(y2)