def __init__(self, gd, finegd, nspins, charge, collinear=True): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.collinear = collinear self.ncomp = 1 if collinear else 2 self.ns = self.nspins * self.ncomp**2 self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.atom_partition = None self.mixer = BaseMixer() self.timer = nulltimer
def __init__(self, gd, finegd, nspins, charge, collinear=True): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.collinear = collinear self.ncomp = 2 - int(collinear) self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.mixer = BaseMixer() self.timer = nulltimer
def set_mixer(self, mixer): if mixer is not None: if self.nspins == 1 and isinstance(mixer, MixerSum): raise RuntimeError('Cannot use MixerSum with nspins==1') self.mixer = mixer else: if self.gd.pbc_c.any(): beta = 0.1 weight = 50.0 else: beta = 0.25 weight = 1.0 if self.nspins == 2: self.mixer = MixerSum(beta=beta, weight=weight) else: self.mixer = Mixer(beta=beta, weight=weight) self.mixer.initialize(self)
def create_calc(name, spinpol, pbc): # Bond lengths between H-C and C-C for ethyne (acetylene) cf. # CRC Handbook of Chemistry and Physics, 87th ed., p. 9-28 dhc = 1.060 dcc = 1.203 atoms = Atoms([ Atom('H', (0, 0, 0)), Atom('C', (dhc, 0, 0)), Atom('C', (dhc + dcc, 0, 0)), Atom('H', (2 * dhc + dcc, 0, 0)) ], pbc=pbc) atoms.center(vacuum=2.0) # Number of occupied and unoccupied bands to converge nbands = int(10 / 2.0) nextra = 3 #TODO use pbc and cell to calculate nkpts kwargs = {} if spinpol: kwargs['mixer'] = MixerSum(nmaxold=5, beta=0.1, weight=100) else: kwargs['mixer'] = Mixer(nmaxold=5, beta=0.1, weight=100) calc = GPAW(h=0.3, nbands=nbands+nextra, xc='PBE', spinpol=spinpol, eigensolver='cg', convergence={'energy':1e-4/len(atoms), 'density':1e-5, \ 'eigenstates': 1e-9, 'bands':-1}, txt=name+'.txt', **kwargs) atoms.set_calculator(calc) atoms.get_potential_energy() calc.write(name + '.gpw', mode='all')
def __init__(self, gd, finegd, nspins, charge): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.mixer = BaseMixer() self.timer = nulltimer self.allocated = False
L = 7.00 basis = BasisMaker('Na').generate(1, 1, energysplit=0.3) atoms = Atoms('Na9', pbc=(0, 0, 1), cell=[L, L, 9 * a]) atoms.positions[:9, 2] = [i * a for i in range(9)] atoms.positions[:, :2] = L / 2. atoms.center() pl_atoms1 = range(4) pl_atoms2 = range(5, 9) pl_cell1 = (L, L, 4 * a) pl_cell2 = pl_cell1 t = Transport(h=0.3, xc='LDA', basis={'Na': basis}, kpts=(1, 1, 1), occupations=FermiDirac(0.1), mode='lcao', poissonsolver=PoissonSolver(nn=2, relax='GS'), txt='Na_lcao.txt', mixer=Mixer(0.1, 5, weight=100.0), pl_atoms=[pl_atoms1, pl_atoms2], pl_cells=[pl_cell1, pl_cell2], pl_kpts=(1, 1, 5), edge_atoms=[[0, 3], [0, 8]], mol_atoms=[4], guess_steps=1, fixed_boundary=False) atoms.set_calculator(t) t.calculate_iv(0.5, 2)
cell = (12.01, 12.02, 12.03) tag = 'g2_dzp' if optimizer is not None: tag += '_%s' % optimizer calcopts_default = { 'mode': 'lcao', 'basis': 'dzp', 'xc': 'PBE', 'width': 0.0, 'fixmom': True, 'nbands': -2, # make systems converge 'mixer': Mixer(0.05, 2), 'maxiter': 300, } calcfactory_default = GPAWFactory(**calcopts_default) calcopts_d16 = calcopts_default.copy() calcopts_d16.update({'convergence': {'density': 1.e-6}}) calcfactory_d16 = GPAWFactory(**calcopts_d16) calcfactory = calcfactory_default collection = Collection(data, names, cell) taskopts = {'fmax': 0.05, 'steps': 100} if optimizer is not None: if 'D16' not in optimizer:
from gpaw.mixer import Mixer from gpaw.response.df0 import DF from gpaw.response.bse import BSE GS = 1 df = 1 bse = 1 check_spectrum = 1 if GS: a = 4.043 atoms = bulk('Al', 'fcc', a=a) atoms.center() calc = GPAW(h=0.2, eigensolver=RMM_DIIS(), mixer=Mixer(0.1,3), kpts=(4,2,2), xc='LDA', nbands=4, convergence={'bands':'all'}) atoms.set_calculator(calc) atoms.get_potential_energy() calc.write('Al.gpw','all') if bse: bse = BSE('Al.gpw', w=np.linspace(0,24,241), nv=[0,4], nc=[0,4], coupling=True,
if len(sys.argv) == 1: optimizer = None else: optimizer = sys.argv[1] tag = 'htb_pw' if optimizer is not None: tag += '_%s' % optimizer calcfactory = GPAWFactory( mode=PW(), xc='PBE', width=0.1, maxiter=400, mixer=Mixer(0.10, 2), eigensolver='cg', # avoid problems with band parallelization communicator=serial_comm, ) taskopts = {'sfmax': 0.01, 'ssteps': 50} if optimizer is not None: taskopts.update({'soptimizer': optimizer}) task = Task(xc='LDA', calcfactory=calcfactory, tag=tag, use_lock_files=True, **taskopts)
def calculate(element, h, vacuum, xc, magmom): atom = Atoms([Atom(element, (0, 0, 0))]) if magmom > 0.0: mms = [magmom for i in range(len(atom))] atom.set_initial_magnetic_moments(mms) atom.center(vacuum=vacuum) mixer = MixerSum(beta=0.4) if element == 'O': mixer = MixerSum(0.4, nmaxold=1, weight=100) atom.set_positions(atom.get_positions() + [0.0, 0.0, 0.0001]) calc_atom = GPAW(h=h, xc=_xc(data[element][xc][2]), experimental={'niter_fixdensity': 2}, eigensolver='rmm-diis', occupations=FermiDirac(0.0, fixmagmom=True), mixer=mixer, parallel=dict(augment_grids=True), nbands=-2, txt='%s.%s.txt' % (element, xc)) atom.set_calculator(calc_atom) mixer = Mixer(beta=0.4, weight=100) compound = molecule(element + '2') if compound == 'O2': mixer = MixerSum(beta=0.4) mms = [1.0 for i in range(len(compound))] compound.set_initial_magnetic_moments(mms) calc = GPAW(h=h, xc=_xc(data[element][xc][2]), experimental={'niter_fixdensity': 2}, eigensolver='rmm-diis', mixer=mixer, parallel=dict(augment_grids=True), txt='%s2.%s.txt' % (element, xc)) compound.set_distance(0, 1, data[element]['R_AA_B3LYP']) compound.center(vacuum=vacuum) compound.set_calculator(calc) if data[element][xc][3] == 'hyb_gga': # only for hybrids e_atom = atom.get_potential_energy() e_compound = compound.get_potential_energy() calc_atom.set(xc=_xc(xc)) calc.set(xc=_xc(xc)) e_atom = atom.get_potential_energy() e_compound = compound.get_potential_energy() dHf_0 = (e_compound - 2 * e_atom + data[element]['ZPE_AA_B3LYP'] + 2 * data[element]['dHf_0_A']) dHf_298 = (dHf_0 + data[element]['H_298_H_0_AA_B3LYP'] - 2 * data[element]['H_298_H_0_A']) * (mol / kcal) de = dHf_298 - data[element][xc][1] E[element][xc] = de if rank == 0: print((xc, h, vacuum, dHf_298, data[element][xc][1], de, de / data[element][xc][1])) if element == 'H': equal(dHf_298, data[element][xc][1], 0.25, msg=xc + ': ') # kcal/mol elif element == 'O': equal(dHf_298, data[element][xc][1], 7.5, msg=xc + ': ') # kcal/mol else: equal(dHf_298, data[element][xc][1], 2.15, msg=xc + ': ') # kcal/mol equal(de, E_ref[element][xc], 0.06, msg=xc + ': ') # kcal/mol
def run_slab(adsorbate, geometry, xc, code): parameters = initialize_parameters(code, 0.1, h) parameters['xc'] = xc tag = 'Ru001' if adsorbate != 'None': name = adsorbate + tag else: name = tag if geometry == 'fix': slab = read_trajectory(code + '_' + name + '.traj') else: adsorbate_heights = {'N': 1.108, 'O': 1.257} slab = hcp0001('Ru', size=(2, 2, 4), a=2.72, c=1.58 * 2.72, vacuum=5.0 + add_vacuum, orthogonal=True) slab.center(axis=2) if adsorbate != 'None': add_adsorbate(slab, adsorbate, adsorbate_heights[adsorbate], 'hcp') slab.set_constraint(FixAtoms(mask=slab.get_tags() >= 3)) if code != 'elk': parameters['nbands'] = 80 parameters['kpts'] = [4, 4, 1] # if code == 'gpaw': from gpaw import GPAW as Calculator from gpaw.mpi import rank parameters['txt'] = code + '_' + name + '.txt' from gpaw.mixer import Mixer, MixerSum parameters['mixer'] = Mixer(beta=0.2, nmaxold=5, weight=100.0) if code == 'dacapo': from ase.calculators.dacapo import Dacapo as Calculator rank = 0 parameters['txtout'] = code + '_' + name + '.txt' if code == 'abinit': from ase.calculators.abinit import Abinit as Calculator rank = 0 parameters['label'] = code + '_' + name if code == 'elk': from ase.calculators.elk import ELK as Calculator rank = 0 parameters['autokpt'] = True elk_dir = 'elk_' + str(parameters['rgkmax']) conv_param = 1.0 parameters['dir'] = elk_dir + '_' + name # calc = Calculator(**parameters) # slab.set_calculator(calc) try: if geometry == 'fix': slab.get_potential_energy() traj = PickleTrajectory(code + '_' + name + '.traj', mode='w') traj.write(slab) else: opt = QuasiNewton(slab, logfile=code + '_' + name + '.qn', trajectory=code + '_' + name + '.traj') opt.run(fmax=fmax) except: raise
def calculate(element, h, vacuum, xc, magmom): atom = Atoms([Atom(element, (0, 0, 0))]) if magmom > 0.0: mms = [magmom for i in range(len(atom))] atom.set_initial_magnetic_moments(mms) atom.center(vacuum=vacuum) mixer = MixerSum(beta=0.2) if element == 'O': mixer = MixerSum(nmaxold=1, weight=100) atom.set_positions(atom.get_positions() + [0.0, 0.0, 0.0001]) calc_atom = GPAW(h=h, xc=data[element][xc][2], occupations=FermiDirac(0.0, fixmagmom=True), mixer=mixer, nbands=-2, txt='%s.%s.txt' % (element, xc)) atom.set_calculator(calc_atom) mixer = Mixer(beta=0.2, weight=100) compound = molecule(element + '2') if compound == 'O2': mixer = MixerSum(beta=0.2) mms = [1.0 for i in range(len(compound))] compound.set_initial_magnetic_moments(mms) calc = GPAW(h=h, xc=data[element][xc][2], mixer=mixer, txt='%s2.%s.txt' % (element, xc)) compound.set_distance(0, 1, data[element]['R_AA_B3LYP']) compound.center(vacuum=vacuum) compound.set_calculator(calc) if data[element][xc][3] == 'hyb_gga': # only for hybrids e_atom = atom.get_potential_energy() e_compound = compound.get_potential_energy() calc_atom.set(xc=xc) calc.set(xc=xc) if 0: qn = QuasiNewton(compound) qn.attach( PickleTrajectory(element + '2' + '_' + xc + '.traj', 'w', compound).write) qn.run(fmax=0.02) e_atom = atom.get_potential_energy() e_compound = compound.get_potential_energy() dHf_0 = (e_compound - 2 * e_atom + data[element]['ZPE_AA_B3LYP'] + 2 * data[element]['dHf_0_A']) dHf_298 = (dHf_0 + data[element]['H_298_H_0_AA_B3LYP'] - 2 * data[element]['H_298_H_0_A']) * (mol / kcal) dist_compound = compound.get_distance(0, 1) de = dHf_298 - data[element][xc][1] E[element][xc] = de if rank == 0: print(xc, h, vacuum, dHf_298, data[element][xc][1], de, de / data[element][xc][1]) if element == 'H': equal(dHf_298, data[element][xc][1], 0.25, msg=xc + ': ') # kcal/mol elif element == 'O': equal(dHf_298, data[element][xc][1], 7.5, msg=xc + ': ') # kcal/mol else: equal(dHf_298, data[element][xc][1], 2.15, msg=xc + ': ') # kcal/mol equal(de, E_ref[element][xc], 0.06, msg=xc + ': ') # kcal/mol
def read(self, reader): """Read state from file.""" if isinstance(reader, str): reader = gpaw.io.open(reader, 'r') r = reader version = r['version'] assert version >= 0.3 self.xc = r['XCFunctional'] self.nbands = r.dimension('nbands') self.spinpol = (r.dimension('nspins') == 2) if r.has_array('NBZKPoints'): self.kpts = r.get('NBZKPoints') else: self.kpts = r.get('BZKPoints') self.usesymm = r['UseSymmetry'] try: self.basis = r['BasisSet'] except KeyError: pass self.gpts = ((r.dimension('ngptsx') + 1) // 2 * 2, (r.dimension('ngptsy') + 1) // 2 * 2, (r.dimension('ngptsz') + 1) // 2 * 2) self.lmax = r['MaximumAngularMomentum'] self.setups = r['SetupTypes'] self.fixdensity = r['FixDensity'] if version <= 0.4: # Old version: XXX print('# Warning: Reading old version 0.3/0.4 restart files ' + 'will be disabled some day in the future!') self.convergence['eigenstates'] = r['Tolerance'] else: self.convergence = { 'density': r['DensityConvergenceCriterion'], 'energy': r['EnergyConvergenceCriterion'] * Hartree, 'eigenstates': r['EigenstatesConvergenceCriterion'], 'bands': r['NumberOfBandsToConverge'] } if version <= 0.6: mixer = 'Mixer' weight = r['MixMetric'] elif version <= 0.7: mixer = r['MixClass'] weight = r['MixWeight'] metric = r['MixMetric'] if metric is None: weight = 1.0 else: mixer = r['MixClass'] weight = r['MixWeight'] if mixer == 'Mixer': from gpaw.mixer import Mixer elif mixer == 'MixerSum': from gpaw.mixer import MixerSum as Mixer elif mixer == 'MixerSum2': from gpaw.mixer import MixerSum2 as Mixer elif mixer == 'MixerDif': from gpaw.mixer import MixerDif as Mixer elif mixer == 'DummyMixer': from gpaw.mixer import DummyMixer as Mixer else: Mixer = None if Mixer is None: self.mixer = None else: self.mixer = Mixer(r['MixBeta'], r['MixOld'], weight) if version == 0.3: # Old version: XXX print('# Warning: Reading old version 0.3 restart files is ' + 'dangerous and will be disabled some day in the future!') self.stencils = (2, 3) self.charge = 0.0 fixmom = False else: self.stencils = (r['KohnShamStencil'], r['InterpolationStencil']) if r['PoissonStencil'] == 999: self.poissonsolver = FFTPoissonSolver() else: self.poissonsolver = PoissonSolver(nn=r['PoissonStencil']) self.charge = r['Charge'] fixmom = r['FixMagneticMoment'] self.occupations = FermiDirac(r['FermiWidth'] * Hartree, fixmagmom=fixmom) try: self.mode = r['Mode'] except KeyError: self.mode = 'fd' try: dtype = r['DataType'] if dtype == 'Float': self.dtype = float else: self.dtype = complex except KeyError: self.dtype = float
def wrap_old_gpw_reader(filename): warnings.warn('You are reading an old-style gpw-file. Please check ' 'the results carefully!') r = Reader(filename) data = { 'version': -1, 'gpaw_version': '1.0', 'ha': Ha, 'bohr': Bohr, 'scf.': { 'converged': True }, 'atoms.': {}, 'wave_functions.': {} } class DictBackend: def write(self, **kwargs): data['atoms.'].update(kwargs) write_atoms(DictBackend(), read_atoms(r)) e_total_extrapolated = r.get('PotentialEnergy').item() * Ha magmom_a = r.get('MagneticMoments') data['results.'] = { 'energy': e_total_extrapolated, 'magmoms': magmom_a, 'magmom': magmom_a.sum() } if r.has_array('CartesianForces'): data['results.']['forces'] = r.get('CartesianForces') * Ha / Bohr p = data['parameters.'] = {} p['xc'] = r['XCFunctional'] p['nbands'] = r.dimension('nbands') p['spinpol'] = (r.dimension('nspins') == 2) bzk_kc = r.get('BZKPoints', broadcast=True) if r.has_array('NBZKPoints'): p['kpts'] = r.get('NBZKPoints', broadcast=True) if r.has_array('MonkhorstPackOffset'): offset_c = r.get('MonkhorstPackOffset', broadcast=True) if offset_c.any(): p['kpts'] = monkhorst_pack(p['kpts']) + offset_c else: p['kpts'] = bzk_kc if r['version'] < 4: usesymm = r['UseSymmetry'] if usesymm is None: p['symmetry'] = {'time_reversal': False, 'point_group': False} elif usesymm: p['symmetry'] = {'time_reversal': True, 'point_group': True} else: p['symmetry'] = {'time_reversal': True, 'point_group': False} else: p['symmetry'] = { 'point_group': r['SymmetryOnSwitch'], 'symmorphic': r['SymmetrySymmorphicSwitch'], 'time_reversal': r['SymmetryTimeReversalSwitch'], 'tolerance': r['SymmetryToleranceCriterion'] } p['basis'] = r['BasisSet'] try: h = r['GridSpacing'] except KeyError: # CMR can't handle None! h = None if h is not None: p['h'] = Bohr * h if r.has_array('GridPoints'): p['gpts'] = r.get('GridPoints') p['lmax'] = r['MaximumAngularMomentum'] p['setups'] = r['SetupTypes'] p['fixdensity'] = r['FixDensity'] nbtc = r['NumberOfBandsToConverge'] if not isinstance(nbtc, (int, str)): # The string 'all' was eval'ed to the all() function! nbtc = 'all' p['convergence'] = { 'density': r['DensityConvergenceCriterion'], 'energy': r['EnergyConvergenceCriterion'] * Ha, 'eigenstates': r['EigenstatesConvergenceCriterion'], 'bands': nbtc } mixer = r['MixClass'] weight = r['MixWeight'] for key in ['basis', 'setups']: dct = p[key] if isinstance(dct, dict) and None in dct: dct['default'] = dct.pop(None) if mixer == 'Mixer': from gpaw.mixer import Mixer elif mixer == 'MixerSum': from gpaw.mixer import MixerSum as Mixer elif mixer == 'MixerSum2': from gpaw.mixer import MixerSum2 as Mixer elif mixer == 'MixerDif': from gpaw.mixer import MixerDif as Mixer elif mixer == 'DummyMixer': from gpaw.mixer import DummyMixer as Mixer else: Mixer = None if Mixer is None: p['mixer'] = None else: p['mixer'] = Mixer(r['MixBeta'], r['MixOld'], weight) p['stencils'] = (r['KohnShamStencil'], r['InterpolationStencil']) vt_sG = r.get('PseudoPotential') * Ha ps = r['PoissonStencil'] if isinstance(ps, int) or ps == 'M': poisson = {'name': 'fd'} poisson['nn'] = ps if data['atoms.']['pbc'] == [1, 1, 0]: v1, v2 = vt_sG[0, :, :, [0, -1]].mean(axis=(1, 2)) if abs(v1 - v2) > 0.01: warnings.warn('I am guessing that this calculation was done ' 'with a dipole-layer correction?') poisson['dipolelayer'] = 'xy' p['poissonsolver'] = poisson p['charge'] = r['Charge'] fixmom = r['FixMagneticMoment'] p['occupations'] = FermiDirac(r['FermiWidth'] * Ha, fixmagmom=fixmom) p['mode'] = r['Mode'] if p['mode'] == 'pw': p['mode'] = PW(ecut=r['PlaneWaveCutoff'] * Ha) if len(bzk_kc) == 1 and not bzk_kc[0].any(): # Gamma point only: if r['DataType'] == 'Complex': p['dtype'] = complex data['occupations.'] = { 'fermilevel': r['FermiLevel'] * Ha, 'split': r.parameters.get('FermiSplit', 0) * Ha, 'h**o': np.nan, 'lumo': np.nan } data['density.'] = { 'density': r.get('PseudoElectronDensity') * Bohr**-3, 'atomic_density_matrices': r.get('AtomicDensityMatrices') } data['hamiltonian.'] = { 'e_coulomb': r['Epot'] * Ha, 'e_entropy': -r['S'] * Ha, 'e_external': r['Eext'] * Ha, 'e_kinetic': r['Ekin'] * Ha, 'e_total_extrapolated': e_total_extrapolated, 'e_xc': r['Exc'] * Ha, 'e_zero': r['Ebar'] * Ha, 'potential': vt_sG, 'atomic_hamiltonian_matrices': r.get('NonLocalPartOfHamiltonian') * Ha } data['hamiltonian.']['e_total_free'] = (sum( data['hamiltonian.'][e] for e in [ 'e_coulomb', 'e_entropy', 'e_external', 'e_kinetic', 'e_xc', 'e_zero' ])) if r.has_array('GLLBPseudoResponsePotential'): data['hamiltonian.']['xc.'] = { 'gllb_pseudo_response_potential': r.get('GLLBPseudoResponsePotential') * Ha, 'gllb_dxc_pseudo_response_potential': r.get('GLLBDxcPseudoResponsePotential') * Ha / Bohr, 'gllb_atomic_density_matrices': r.get('GLLBAtomicDensityMatrices'), 'gllb_atomic_response_matrices': r.get('GLLBAtomicResponseMatrices'), 'gllb_dxc_atomic_density_matrices': r.get('GLLBDxcAtomicDensityMatrices'), 'gllb_dxc_atomic_response_matrices': r.get('GLLBDxcAtomicResponseMatrices') } special = [('eigenvalues', 'Eigenvalues'), ('occupations', 'OccupationNumbers'), ('projections', 'Projections')] if r['Mode'] == 'pw': special.append(('coefficients', 'PseudoWaveFunctions')) try: data['wave_functions.']['indices'] = r.get('PlaneWaveIndices') except KeyError: pass elif r['Mode'] == 'fd': special.append(('values', 'PseudoWaveFunctions')) else: special.append(('coefficients', 'WaveFunctionCoefficients')) for name, old in special: try: fd, shape, size, dtype = r.get_file_object(old, ()) except KeyError: continue offset = fd data['wave_functions.'][name + '.'] = { 'ndarray': (shape, dtype.name, offset) } new = ulm.Reader(devnull, data=data, little_endian=r.byteswap ^ np.little_endian) for ref in new._data['wave_functions']._data.values(): try: ref.fd = ref.offset except AttributeError: continue ref.offset = 0 return new
class Density: """Density object. Attributes: =============== ===================================================== ``gd`` Grid descriptor for coarse grids. ``finegd`` Grid descriptor for fine grids. ``interpolate`` Function for interpolating the electron density. ``mixer`` ``DensityMixer`` object. =============== ===================================================== Soft and smooth pseudo functions on uniform 3D grids: ========== ========================================= ``nt_sG`` Electron density on the coarse grid. ``nt_sg`` Electron density on the fine grid. ``nt_g`` Electron density on the fine grid. ``rhot_g`` Charge density on the fine grid. ``nct_G`` Core electron-density on the coarse grid. ========== ========================================= """ def __init__(self, gd, finegd, nspins, charge, collinear=True): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.collinear = collinear self.ncomp = 2 - int(collinear) self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.mixer = BaseMixer() self.timer = nulltimer def initialize(self, setups, timer, magmom_av, hund): self.timer = timer self.setups = setups self.hund = hund self.magmom_av = magmom_av def reset(self): # TODO: reset other parameters? self.nt_sG = None def set_positions(self, spos_ac, rank_a=None): self.nct.set_positions(spos_ac) self.ghat.set_positions(spos_ac) self.mixer.reset() #self.nt_sG = None self.nt_sg = None self.nt_g = None self.rhot_g = None self.Q_aL = None # If both old and new atomic ranks are present, start a blank dict if # it previously didn't exist but it will needed for the new atoms. if (self.rank_a is not None and rank_a is not None and self.D_asp is None and (rank_a == self.gd.comm.rank).any()): self.D_asp = {} if (self.rank_a is not None and self.D_asp is not None and rank_a is not None and not isinstance(self.gd.comm, SerialCommunicator)): self.timer.start('Redistribute') requests = [] flags = (self.rank_a != rank_a) my_incoming_atom_indices = np.argwhere(np.bitwise_and(flags, \ rank_a == self.gd.comm.rank)).ravel() my_outgoing_atom_indices = np.argwhere(np.bitwise_and(flags, \ self.rank_a == self.gd.comm.rank)).ravel() for a in my_incoming_atom_indices: # Get matrix from old domain: ni = self.setups[a].ni D_sp = np.empty((self.nspins * self.ncomp**2, ni * (ni + 1) // 2)) requests.append(self.gd.comm.receive(D_sp, self.rank_a[a], tag=a, block=False)) assert a not in self.D_asp self.D_asp[a] = D_sp for a in my_outgoing_atom_indices: # Send matrix to new domain: D_sp = self.D_asp.pop(a) requests.append(self.gd.comm.send(D_sp, rank_a[a], tag=a, block=False)) self.gd.comm.waitall(requests) self.timer.stop('Redistribute') self.rank_a = rank_a def calculate_pseudo_density(self, wfs): """Calculate nt_sG from scratch. nt_sG will be equal to nct_G plus the contribution from wfs.add_to_density(). """ wfs.calculate_density_contribution(self.nt_sG) self.nt_sG[:self.nspins] += self.nct_G def update(self, wfs): self.timer.start('Density') self.timer.start('Pseudo density') self.calculate_pseudo_density(wfs) self.timer.stop('Pseudo density') self.timer.start('Atomic density matrices') wfs.calculate_atomic_density_matrices(self.D_asp) self.timer.stop('Atomic density matrices') self.timer.start('Multipole moments') comp_charge = self.calculate_multipole_moments() self.timer.stop('Multipole moments') if isinstance(wfs, LCAOWaveFunctions): self.timer.start('Normalize') self.normalize(comp_charge) self.timer.stop('Normalize') self.timer.start('Mix') self.mix(comp_charge) self.timer.stop('Mix') self.timer.stop('Density') def normalize(self, comp_charge=None): """Normalize pseudo density.""" if comp_charge is None: comp_charge = self.calculate_multipole_moments() pseudo_charge = self.gd.integrate(self.nt_sG[:self.nspins]).sum() if pseudo_charge + self.charge + comp_charge != 0: if pseudo_charge != 0: x = -(self.charge + comp_charge) / pseudo_charge self.nt_sG *= x else: # Use homogeneous background: volume = self.gd.get_size_of_global_array().prod() * self.gd.dv self.nt_sG[:self.nspins] = -(self.charge + comp_charge) / volume def mix(self, comp_charge): if not self.mixer.mix_rho: self.mixer.mix(self) comp_charge = None self.interpolate_pseudo_density(comp_charge) self.calculate_pseudo_charge() if self.mixer.mix_rho: self.mixer.mix(self) def calculate_multipole_moments(self): """Calculate multipole moments of compensation charges. Returns the total compensation charge in units of electron charge, so the number will be negative because of the dominating contribution from the nuclear charge.""" comp_charge = 0.0 self.Q_aL = {} for a, D_sp in self.D_asp.items(): Q_L = self.Q_aL[a] = np.dot(D_sp[:self.nspins].sum(0), self.setups[a].Delta_pL) Q_L[0] += self.setups[a].Delta0 comp_charge += Q_L[0] return self.gd.comm.sum(comp_charge) * sqrt(4 * pi) def initialize_from_atomic_densities(self, basis_functions): """Initialize D_asp, nt_sG and Q_aL from atomic densities. nt_sG is initialized from atomic orbitals, and will be constructed with the specified magnetic moments and obeying Hund's rules if ``hund`` is true.""" # XXX does this work with blacs? What should be distributed? # Apparently this doesn't use blacs at all, so it's serial # with respect to the blacs distribution. That means it works # but is not particularly efficient (not that this is a time # consuming step) self.D_asp = {} f_asi = {} for a in basis_functions.atom_indices: c = self.charge / len(self.setups) # distribute on all atoms M_v = self.magmom_av[a] M = (M_v**2).sum()**0.5 f_si = self.setups[a].calculate_initial_occupation_numbers( M, self.hund, charge=c, nspins=self.nspins * self.ncomp) if self.collinear: if M_v[2] < 0: f_si = f_si[::-1].copy() else: f_i = f_si.sum(axis=0) fm_i = f_si[0] - f_si[1] f_si = np.zeros((4, len(f_i))) f_si[0] = f_i if M > 0: f_si[1:4] = np.outer(M_v / M, fm_i) if a in basis_functions.my_atom_indices: self.D_asp[a] = self.setups[a].initialize_density_matrix(f_si) f_asi[a] = f_si self.nt_sG = self.gd.zeros(self.nspins * self.ncomp**2) basis_functions.add_to_density(self.nt_sG, f_asi) self.nt_sG[:self.nspins] += self.nct_G self.calculate_normalized_charges_and_mix() def initialize_from_wavefunctions(self, wfs): """Initialize D_asp, nt_sG and Q_aL from wave functions.""" self.nt_sG = self.gd.empty(self.nspins * self.ncomp**2) self.calculate_pseudo_density(wfs) self.D_asp = {} my_atom_indices = np.argwhere(wfs.rank_a == self.gd.comm.rank).ravel() for a in my_atom_indices: ni = self.setups[a].ni self.D_asp[a] = np.empty((self.nspins, ni * (ni + 1) // 2)) wfs.calculate_atomic_density_matrices(self.D_asp) self.calculate_normalized_charges_and_mix() def initialize_directly_from_arrays(self, nt_sG, D_asp): """Set D_asp and nt_sG directly.""" self.nt_sG = nt_sG self.D_asp = D_asp #self.calculate_normalized_charges_and_mix() # No calculate multipole moments? Tests will fail because of # improperly initialized mixer def calculate_normalized_charges_and_mix(self): comp_charge = self.calculate_multipole_moments() self.normalize(comp_charge) self.mix(comp_charge) def set_mixer(self, mixer): if mixer is not None: if self.nspins == 1 and isinstance(mixer, MixerSum): raise RuntimeError('Cannot use MixerSum with nspins==1') self.mixer = mixer else: if self.gd.pbc_c.any(): beta = 0.05 history = 5 weight = 50.0 else: beta = 0.25 history = 3 weight = 1.0 if self.nspins == 2: self.mixer = MixerSum(beta, history, weight) else: self.mixer = Mixer(beta, history, weight) self.mixer.initialize(self) def estimate_magnetic_moments(self): magmom_av = np.zeros_like(self.magmom_av) if self.nspins == 2 or not self.collinear: for a, D_sp in self.D_asp.items(): if self.collinear: magmom_av[a, 2] = np.dot(D_sp[0] - D_sp[1], self.setups[a].N0_p) else: magmom_av[a] = np.dot(D_sp[1:4], self.setups[a].N0_p) self.gd.comm.sum(magmom_av) return magmom_av def get_correction(self, a, spin): """Integrated atomic density correction. Get the integrated correction to the pseuso density relative to the all-electron density. """ setup = self.setups[a] return sqrt(4 * pi) * ( np.dot(self.D_asp[a][spin], setup.Delta_pL[:, 0]) + setup.Delta0 / self.nspins) def get_all_electron_density(self, atoms, gridrefinement=2): """Return real all-electron density array.""" # Refinement of coarse grid, for representation of the AE-density if gridrefinement == 1: gd = self.gd n_sg = self.nt_sG.copy() elif gridrefinement == 2: gd = self.finegd if self.nt_sg is None: self.interpolate_pseudo_density() n_sg = self.nt_sg.copy() elif gridrefinement == 4: # Extra fine grid gd = self.finegd.refine() # Interpolation function for the density: interpolator = Transformer(self.finegd, gd, 3) # Transfer the pseudo-density to the fine grid: n_sg = gd.empty(self.nspins) if self.nt_sg is None: self.interpolate_pseudo_density() for s in range(self.nspins): interpolator.apply(self.nt_sg[s], n_sg[s]) else: raise NotImplementedError # Add corrections to pseudo-density to get the AE-density splines = {} phi_aj = [] phit_aj = [] nc_a = [] nct_a = [] for a, id in enumerate(self.setups.id_a): if id in splines: phi_j, phit_j, nc, nct = splines[id] else: # Load splines: phi_j, phit_j, nc, nct = self.setups[a].get_partial_waves()[:4] splines[id] = (phi_j, phit_j, nc, nct) phi_aj.append(phi_j) phit_aj.append(phit_j) nc_a.append([nc]) nct_a.append([nct]) # Create localized functions from splines phi = BasisFunctions(gd, phi_aj) phit = BasisFunctions(gd, phit_aj) nc = LFC(gd, nc_a) nct = LFC(gd, nct_a) spos_ac = atoms.get_scaled_positions() % 1.0 phi.set_positions(spos_ac) phit.set_positions(spos_ac) nc.set_positions(spos_ac) nct.set_positions(spos_ac) I_sa = np.zeros((self.nspins, len(atoms))) a_W = np.empty(len(phi.M_W), np.intc) W = 0 for a in phi.atom_indices: nw = len(phi.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw x_W = phi.create_displacement_arrays()[0] rho_MM = np.zeros((phi.Mmax, phi.Mmax)) for s, I_a in enumerate(I_sa): M1 = 0 for a, setup in enumerate(self.setups): ni = setup.ni D_sp = self.D_asp.get(a) if D_sp is None: D_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) else: I_a[a] = ((setup.Nct - setup.Nc) / self.nspins - sqrt(4 * pi) * np.dot(D_sp[s], setup.Delta_pL[:, 0])) if gd.comm.size > 1: gd.comm.broadcast(D_sp, self.rank_a[a]) M2 = M1 + ni rho_MM[M1:M2, M1:M2] = unpack2(D_sp[s]) M1 = M2 phi.lfc.ae_valence_density_correction(rho_MM, n_sg[s], a_W, I_a, x_W) phit.lfc.ae_valence_density_correction(-rho_MM, n_sg[s], a_W, I_a, x_W) a_W = np.empty(len(nc.M_W), np.intc) W = 0 for a in nc.atom_indices: nw = len(nc.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw scale = 1.0 / self.nspins for s, I_a in enumerate(I_sa): nc.lfc.ae_core_density_correction(scale, n_sg[s], a_W, I_a) nct.lfc.ae_core_density_correction(-scale, n_sg[s], a_W, I_a) gd.comm.sum(I_a) N_c = gd.N_c g_ac = np.around(N_c * spos_ac).astype(int) % N_c - gd.beg_c for I, g_c in zip(I_a, g_ac): if (g_c >= 0).all() and (g_c < gd.n_c).all(): n_sg[s][tuple(g_c)] -= I / gd.dv return n_sg, gd def estimate_memory(self, mem): nspins = self.nspins nbytes = self.gd.bytecount() nfinebytes = self.finegd.bytecount() arrays = mem.subnode('Arrays') for name, size in [('nt_sG', nbytes * nspins), ('nt_sg', nfinebytes * nspins), ('nt_g', nfinebytes), ('rhot_g', nfinebytes), ('nct_G', nbytes)]: arrays.subnode(name, size) lfs = mem.subnode('Localized functions') for name, obj in [('nct', self.nct), ('ghat', self.ghat)]: obj.estimate_memory(lfs.subnode(name)) self.mixer.estimate_memory(mem.subnode('Mixer'), self.gd) # TODO # The implementation of interpolator memory use is not very # accurate; 20 MiB vs 13 MiB estimated in one example, probably # worse for parallel calculations. def get_spin_contamination(self, atoms, majority_spin=0): """Calculate the spin contamination. Spin contamination is defined as the integral over the spin density difference, where it is negative (i.e. the minority spin density is larger than the majority spin density. """ if majority_spin == 0: smaj = 0 smin = 1 else: smaj = 1 smin = 0 nt_sg, gd = self.get_all_electron_density(atoms) dt_sg = nt_sg[smin] - nt_sg[smaj] dt_sg = np.where(dt_sg > 0, dt_sg, 0.0) return gd.integrate(dt_sg) def read(self, reader, parallel, kd, bd): if reader['version'] > 0.3: density_error = reader['DensityError'] if density_error is not None: self.mixer.set_charge_sloshing(density_error) if not reader.has_array('PseudoElectronDensity'): return hdf5 = hasattr(reader, 'hdf5') nt_sG = self.gd.empty(self.nspins) if hdf5: # Read pseudoelectron density on the coarse grid # and broadcast on kpt_comm and band_comm: indices = [slice(0, self.nspins)] + self.gd.get_slice() do_read = (kd.comm.rank == 0) and (bd.comm.rank == 0) reader.get('PseudoElectronDensity', out=nt_sG, parallel=parallel, read=do_read, *indices) # XXX read=? kd.comm.broadcast(nt_sG, 0) bd.comm.broadcast(nt_sG, 0) else: for s in range(self.nspins): self.gd.distribute(reader.get('PseudoElectronDensity', s), nt_sG[s]) # Read atomic density matrices D_asp = {} natoms = len(self.setups) self.rank_a = np.zeros(natoms, int) all_D_sp = reader.get('AtomicDensityMatrices', broadcast=True) if self.gd.comm.rank == 0: D_asp = read_atomic_matrices(all_D_sp, self.setups) self.initialize_directly_from_arrays(nt_sG, D_asp)
# XC functional + kinetic functional (minus the Tw contribution) to be used xcname = '1.0_LDA_K_TF+1.0_LDA_X+1.0_LDA_C_PW' # Fraction of Tw lambda_coeff = 1.0 name = 'lambda_{0}'.format(lambda_coeff) filename = 'atoms_' + name + '.dat' f = paropen(filename, 'w') elements = ['N'] for symbol in elements: mixer = Mixer() eigensolver = CG(tw_coeff=lambda_coeff) poissonsolver = PoissonSolver() molecule = Atoms(symbol, positions=[(c, c, c)], cell=(a, a, a)) calc = GPAW(h=h, xc=xcname, maxiter=240, eigensolver=eigensolver, mixer=mixer, setups=name, poissonsolver=poissonsolver) molecule.set_calculator(calc)
setup_paths.insert(0, '../') atoms = read_xyz('../Au102_revised.xyz') prefix = 'Au_cluster' L = 32.0 atoms.set_cell((L,L,L),scale_atoms=False) atoms.center() atoms.set_pbc(1) r = [1, 1, 1] atoms = atoms.repeat(r) n = [240 * ri for ri in r] # nbands (>=1683) is the number of bands per cluster nbands = 3*6*6*16 # 1728 for ri in r: nbands = nbands*ri mixer = Mixer(beta=0.1, nmaxold=5, weight=100.0) # the next three lines decrease memory usage es = RMM_DIIS(keep_htpsit=False) from gpaw.hs_operators import MatrixOperator MatrixOperator.nblocks = 16 calc = GPAW(nbands=nbands, # uncomment next two lines to use lcao/sz #mode='lcao', #basis='sz', gpts=tuple(n), maxiter=5, width = 0.1, xc='LDA', mixer=mixer, eigensolver = es, txt=prefix + '.txt',
results = [0.245393619863, 9.98114719239] electrons = [6, 3] charges = [0,1] for symbol in elements: xcname = '1.0_LDA_K_TF+1.0_LDA_X' g = gen(symbol, xcname=xcname, scalarrel=False, orbital_free=True, gpernode=75) for element, result, e, charge in zip(elements, results, electrons, charges): atom = Atoms(element, positions=[(c, c, c)], cell=(a, a, a)) mixer = Mixer(0.3, 5, 1) calc = GPAW(gpts=(32, 32, 32), txt='-', xc=xcname, poissonsolver=PoissonSolver(eps=1e-6), eigensolver='cg', mixer=mixer, charge=charge) atom.set_calculator(calc) E = atom.get_total_energy() n = calc.get_all_electron_density() dv = atom.get_volume() / calc.get_number_of_grid_points().prod() I = n.sum() * dv / 2**3 equal(I, e, 1.0e-6) equal(result, E, 1.0e-3)
class Density: """Density object. Attributes: =============== ===================================================== ``gd`` Grid descriptor for coarse grids. ``finegd`` Grid descriptor for fine grids. ``interpolate`` Function for interpolating the electron density. ``mixer`` ``DensityMixer`` object. =============== ===================================================== Soft and smooth pseudo functions on uniform 3D grids: ========== ========================================= ``nt_sG`` Electron density on the coarse grid. ``nt_sg`` Electron density on the fine grid. ``nt_g`` Electron density on the fine grid. ``rhot_g`` Charge density on the fine grid. ``nct_G`` Core electron-density on the coarse grid. ========== ========================================= """ def __init__(self, gd, finegd, nspins, charge, collinear=True): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.collinear = collinear self.ncomp = 1 if collinear else 2 self.ns = self.nspins * self.ncomp**2 self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.atom_partition = None self.mixer = BaseMixer() self.timer = nulltimer def initialize(self, setups, timer, magmom_av, hund): self.timer = timer self.setups = setups self.hund = hund self.magmom_av = magmom_av def reset(self): # TODO: reset other parameters? self.nt_sG = None def set_positions(self, spos_ac, rank_a): atom_partition = AtomPartition(self.gd.comm, rank_a) self.nct.set_positions(spos_ac) self.ghat.set_positions(spos_ac) self.mixer.reset() #self.nt_sG = None self.nt_sg = None self.nt_g = None self.rhot_g = None self.Q_aL = None # If both old and new atomic ranks are present, start a blank dict if # it previously didn't exist but it will needed for the new atoms. assert rank_a is not None if (self.rank_a is not None and self.D_asp is None and (rank_a == self.gd.comm.rank).any()): self.D_asp = {} if (self.rank_a is not None and self.D_asp is not None and not isinstance(self.gd.comm, SerialCommunicator)): self.timer.start('Redistribute') def get_empty(a): ni = self.setups[a].ni return np.empty((self.ns, ni * (ni + 1) // 2)) self.atom_partition.redistribute(atom_partition, self.D_asp, get_empty) self.timer.stop('Redistribute') self.rank_a = rank_a self.atom_partition = atom_partition def calculate_pseudo_density(self, wfs): """Calculate nt_sG from scratch. nt_sG will be equal to nct_G plus the contribution from wfs.add_to_density(). """ wfs.calculate_density_contribution(self.nt_sG) self.nt_sG[:self.nspins] += self.nct_G def update(self, wfs): self.timer.start('Density') self.timer.start('Pseudo density') self.calculate_pseudo_density(wfs) self.timer.stop('Pseudo density') self.timer.start('Atomic density matrices') wfs.calculate_atomic_density_matrices(self.D_asp) self.timer.stop('Atomic density matrices') self.timer.start('Multipole moments') comp_charge = self.calculate_multipole_moments() self.timer.stop('Multipole moments') if isinstance(wfs, LCAOWaveFunctions): self.timer.start('Normalize') self.normalize(comp_charge) self.timer.stop('Normalize') self.timer.start('Mix') self.mix(comp_charge) self.timer.stop('Mix') self.timer.stop('Density') def normalize(self, comp_charge=None): """Normalize pseudo density.""" if comp_charge is None: comp_charge = self.calculate_multipole_moments() pseudo_charge = self.gd.integrate(self.nt_sG[:self.nspins]).sum() if pseudo_charge + self.charge + comp_charge != 0: if pseudo_charge != 0: x = -(self.charge + comp_charge) / pseudo_charge self.nt_sG *= x else: # Use homogeneous background: volume = self.gd.get_size_of_global_array().prod() * self.gd.dv self.nt_sG[:self.nspins] = -(self.charge + comp_charge) / volume def mix(self, comp_charge): if not self.mixer.mix_rho: self.mixer.mix(self) comp_charge = None self.interpolate_pseudo_density(comp_charge) self.calculate_pseudo_charge() if self.mixer.mix_rho: self.mixer.mix(self) def calculate_multipole_moments(self): """Calculate multipole moments of compensation charges. Returns the total compensation charge in units of electron charge, so the number will be negative because of the dominating contribution from the nuclear charge.""" comp_charge = 0.0 self.Q_aL = {} for a, D_sp in self.D_asp.items(): Q_L = self.Q_aL[a] = np.dot(D_sp[:self.nspins].sum(0), self.setups[a].Delta_pL) Q_L[0] += self.setups[a].Delta0 comp_charge += Q_L[0] return self.gd.comm.sum(comp_charge) * sqrt(4 * pi) def initialize_from_atomic_densities(self, basis_functions): """Initialize D_asp, nt_sG and Q_aL from atomic densities. nt_sG is initialized from atomic orbitals, and will be constructed with the specified magnetic moments and obeying Hund's rules if ``hund`` is true.""" # XXX does this work with blacs? What should be distributed? # Apparently this doesn't use blacs at all, so it's serial # with respect to the blacs distribution. That means it works # but is not particularly efficient (not that this is a time # consuming step) self.D_asp = {} f_asi = {} for a in basis_functions.atom_indices: c = self.charge / len(self.setups) # distribute on all atoms M_v = self.magmom_av[a] M = (M_v**2).sum()**0.5 f_si = self.setups[a].calculate_initial_occupation_numbers( M, self.hund, charge=c, nspins=self.nspins * self.ncomp) if self.collinear: if M_v[2] < 0: f_si = f_si[::-1].copy() else: f_i = f_si.sum(axis=0) fm_i = f_si[0] - f_si[1] f_si = np.zeros((4, len(f_i))) f_si[0] = f_i if M > 0: f_si[1:4] = np.outer(M_v / M, fm_i) if a in basis_functions.my_atom_indices: self.D_asp[a] = self.setups[a].initialize_density_matrix(f_si) f_asi[a] = f_si self.nt_sG = self.gd.zeros(self.ns) basis_functions.add_to_density(self.nt_sG, f_asi) self.nt_sG[:self.nspins] += self.nct_G self.calculate_normalized_charges_and_mix() def initialize_from_wavefunctions(self, wfs): """Initialize D_asp, nt_sG and Q_aL from wave functions.""" self.timer.start("Density initialize from wavefunctions") self.nt_sG = self.gd.empty(self.ns) self.calculate_pseudo_density(wfs) self.D_asp = {} my_atom_indices = np.argwhere(wfs.rank_a == self.gd.comm.rank).ravel() for a in my_atom_indices: ni = self.setups[a].ni self.D_asp[a] = np.empty((self.nspins, ni * (ni + 1) // 2)) wfs.calculate_atomic_density_matrices(self.D_asp) self.calculate_normalized_charges_and_mix() self.timer.stop("Density initialize from wavefunctions") def initialize_directly_from_arrays(self, nt_sG, D_asp): """Set D_asp and nt_sG directly.""" self.nt_sG = nt_sG self.D_asp = D_asp #self.calculate_normalized_charges_and_mix() # No calculate multipole moments? Tests will fail because of # improperly initialized mixer def calculate_normalized_charges_and_mix(self): comp_charge = self.calculate_multipole_moments() self.normalize(comp_charge) self.mix(comp_charge) def set_mixer(self, mixer): if mixer is not None: if self.nspins == 1 and isinstance(mixer, MixerSum): raise RuntimeError('Cannot use MixerSum with nspins==1') self.mixer = mixer else: if self.gd.pbc_c.any(): beta = 0.05 history = 5 weight = 50.0 else: beta = 0.25 history = 3 weight = 1.0 if self.nspins == 2: self.mixer = MixerSum(beta, history, weight) else: self.mixer = Mixer(beta, history, weight) self.mixer.initialize(self) def estimate_magnetic_moments(self): magmom_av = np.zeros_like(self.magmom_av) if self.nspins == 2 or not self.collinear: for a, D_sp in self.D_asp.items(): if self.collinear: magmom_av[a, 2] = np.dot(D_sp[0] - D_sp[1], self.setups[a].N0_p) else: magmom_av[a] = np.dot(D_sp[1:4], self.setups[a].N0_p) self.gd.comm.sum(magmom_av) return magmom_av def get_correction(self, a, spin): """Integrated atomic density correction. Get the integrated correction to the pseuso density relative to the all-electron density. """ setup = self.setups[a] return sqrt(4 * pi) * ( np.dot(self.D_asp[a][spin], setup.Delta_pL[:, 0]) + setup.Delta0 / self.nspins) def get_all_electron_density(self, atoms=None, gridrefinement=2, spos_ac=None): """Return real all-electron density array. Usage: Either get_all_electron_density(atoms) or get_all_electron_density(spos_ac=spos_ac) """ if spos_ac is None: spos_ac = atoms.get_scaled_positions() % 1.0 # Refinement of coarse grid, for representation of the AE-density if gridrefinement == 1: gd = self.gd n_sg = self.nt_sG.copy() elif gridrefinement == 2: gd = self.finegd if self.nt_sg is None: self.interpolate_pseudo_density() n_sg = self.nt_sg.copy() elif gridrefinement == 4: # Extra fine grid gd = self.finegd.refine() # Interpolation function for the density: interpolator = Transformer(self.finegd, gd, 3) # Transfer the pseudo-density to the fine grid: n_sg = gd.empty(self.nspins) if self.nt_sg is None: self.interpolate_pseudo_density() for s in range(self.nspins): interpolator.apply(self.nt_sg[s], n_sg[s]) else: raise NotImplementedError # Add corrections to pseudo-density to get the AE-density splines = {} phi_aj = [] phit_aj = [] nc_a = [] nct_a = [] for a, id in enumerate(self.setups.id_a): if id in splines: phi_j, phit_j, nc, nct = splines[id] else: # Load splines: phi_j, phit_j, nc, nct = self.setups[a].get_partial_waves()[:4] splines[id] = (phi_j, phit_j, nc, nct) phi_aj.append(phi_j) phit_aj.append(phit_j) nc_a.append([nc]) nct_a.append([nct]) # Create localized functions from splines phi = BasisFunctions(gd, phi_aj) phit = BasisFunctions(gd, phit_aj) nc = LFC(gd, nc_a) nct = LFC(gd, nct_a) phi.set_positions(spos_ac) phit.set_positions(spos_ac) nc.set_positions(spos_ac) nct.set_positions(spos_ac) I_sa = np.zeros((self.nspins, len(spos_ac))) a_W = np.empty(len(phi.M_W), np.intc) W = 0 for a in phi.atom_indices: nw = len(phi.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw x_W = phi.create_displacement_arrays()[0] rho_MM = np.zeros((phi.Mmax, phi.Mmax)) for s, I_a in enumerate(I_sa): M1 = 0 for a, setup in enumerate(self.setups): ni = setup.ni D_sp = self.D_asp.get(a) if D_sp is None: D_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) else: I_a[a] = ((setup.Nct - setup.Nc) / self.nspins - sqrt(4 * pi) * np.dot(D_sp[s], setup.Delta_pL[:, 0])) if gd.comm.size > 1: gd.comm.broadcast(D_sp, self.rank_a[a]) M2 = M1 + ni rho_MM[M1:M2, M1:M2] = unpack2(D_sp[s]) M1 = M2 phi.lfc.ae_valence_density_correction(rho_MM, n_sg[s], a_W, I_a, x_W) phit.lfc.ae_valence_density_correction(-rho_MM, n_sg[s], a_W, I_a, x_W) a_W = np.empty(len(nc.M_W), np.intc) W = 0 for a in nc.atom_indices: nw = len(nc.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw scale = 1.0 / self.nspins for s, I_a in enumerate(I_sa): nc.lfc.ae_core_density_correction(scale, n_sg[s], a_W, I_a) nct.lfc.ae_core_density_correction(-scale, n_sg[s], a_W, I_a) gd.comm.sum(I_a) N_c = gd.N_c g_ac = np.around(N_c * spos_ac).astype(int) % N_c - gd.beg_c for I, g_c in zip(I_a, g_ac): if (g_c >= 0).all() and (g_c < gd.n_c).all(): n_sg[s][tuple(g_c)] -= I / gd.dv return n_sg, gd def estimate_memory(self, mem): nspins = self.nspins nbytes = self.gd.bytecount() nfinebytes = self.finegd.bytecount() arrays = mem.subnode('Arrays') for name, size in [('nt_sG', nbytes * nspins), ('nt_sg', nfinebytes * nspins), ('nt_g', nfinebytes), ('rhot_g', nfinebytes), ('nct_G', nbytes)]: arrays.subnode(name, size) lfs = mem.subnode('Localized functions') for name, obj in [('nct', self.nct), ('ghat', self.ghat)]: obj.estimate_memory(lfs.subnode(name)) self.mixer.estimate_memory(mem.subnode('Mixer'), self.gd) # TODO # The implementation of interpolator memory use is not very # accurate; 20 MiB vs 13 MiB estimated in one example, probably # worse for parallel calculations. def get_spin_contamination(self, atoms, majority_spin=0): """Calculate the spin contamination. Spin contamination is defined as the integral over the spin density difference, where it is negative (i.e. the minority spin density is larger than the majority spin density. """ if majority_spin == 0: smaj = 0 smin = 1 else: smaj = 1 smin = 0 nt_sg, gd = self.get_all_electron_density(atoms) dt_sg = nt_sg[smin] - nt_sg[smaj] dt_sg = np.where(dt_sg > 0, dt_sg, 0.0) return gd.integrate(dt_sg) def read(self, reader, parallel, kptband_comm): if reader['version'] > 0.3: density_error = reader['DensityError'] if density_error is not None: self.mixer.set_charge_sloshing(density_error) if not reader.has_array('PseudoElectronDensity'): return hdf5 = hasattr(reader, 'hdf5') nt_sG = self.gd.empty(self.nspins) if hdf5: # Read pseudoelectron density on the coarse grid # and broadcast on kpt_comm and band_comm: indices = [slice(0, self.nspins)] + self.gd.get_slice() do_read = (kptband_comm.rank == 0) reader.get('PseudoElectronDensity', out=nt_sG, parallel=parallel, read=do_read, *indices) # XXX read=? kptband_comm.broadcast(nt_sG, 0) else: for s in range(self.nspins): self.gd.distribute(reader.get('PseudoElectronDensity', s), nt_sG[s]) # Read atomic density matrices D_asp = {} natoms = len(self.setups) self.rank_a = np.zeros(natoms, int) all_D_sp = reader.get('AtomicDensityMatrices', broadcast=True) if self.gd.comm.rank == 0: D_asp = read_atomic_matrices(all_D_sp, self.setups) self.initialize_directly_from_arrays(nt_sG, D_asp)
class Density: """Density object. Attributes: =============== ===================================================== ``gd`` Grid descriptor for coarse grids. ``finegd`` Grid descriptor for fine grids. ``interpolate`` Function for interpolating the electron density. ``mixer`` ``DensityMixer`` object. =============== ===================================================== Soft and smooth pseudo functions on uniform 3D grids: ========== ========================================= ``nt_sG`` Electron density on the coarse grid. ``nt_sg`` Electron density on the fine grid. ``nt_g`` Electron density on the fine grid. ``rhot_g`` Charge density on the fine grid. ``nct_G`` Core electron-density on the coarse grid. ========== ========================================= """ def __init__(self, gd, finegd, nspins, charge): """Create the Density object.""" self.gd = gd self.finegd = finegd self.nspins = nspins self.charge = float(charge) self.charge_eps = 1e-7 self.D_asp = None self.Q_aL = None self.nct_G = None self.nt_sG = None self.rhot_g = None self.nt_sg = None self.nt_g = None self.rank_a = None self.mixer = BaseMixer() self.timer = nulltimer self.allocated = False def initialize(self, setups, stencil, timer, magmom_a, hund): self.timer = timer self.setups = setups self.hund = hund self.magmom_a = magmom_a # Interpolation function for the density: self.interpolator = Transformer(self.gd, self.finegd, stencil, allocate=False) spline_aj = [] for setup in setups: if setup.nct is None: spline_aj.append([]) else: spline_aj.append([setup.nct]) self.nct = LFC(self.gd, spline_aj, integral=[setup.Nct for setup in setups], forces=True, cut=True) self.ghat = LFC(self.finegd, [setup.ghat_l for setup in setups], integral=sqrt(4 * pi), forces=True) if self.allocated: self.allocated = False self.allocate() def allocate(self): assert not self.allocated self.interpolator.allocate() self.allocated = True def reset(self): # TODO: reset other parameters? self.nt_sG = None def set_positions(self, spos_ac, rank_a=None): if not self.allocated: self.allocate() self.nct.set_positions(spos_ac) self.ghat.set_positions(spos_ac) self.mixer.reset() self.nct_G = self.gd.zeros() self.nct.add(self.nct_G, 1.0 / self.nspins) #self.nt_sG = None self.nt_sg = None self.nt_g = None self.rhot_g = None self.Q_aL = None # If both old and new atomic ranks are present, start a blank dict if # it previously didn't exist but it will needed for the new atoms. if (self.rank_a is not None and rank_a is not None and self.D_asp is None and (rank_a == self.gd.comm.rank).any()): self.D_asp = {} if self.rank_a is not None and self.D_asp is not None: self.timer.start('Redistribute') requests = [] flags = (self.rank_a != rank_a) my_incoming_atom_indices = np.argwhere(np.bitwise_and(flags, \ rank_a == self.gd.comm.rank)).ravel() my_outgoing_atom_indices = np.argwhere(np.bitwise_and(flags, \ self.rank_a == self.gd.comm.rank)).ravel() for a in my_incoming_atom_indices: # Get matrix from old domain: ni = self.setups[a].ni D_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) requests.append(self.gd.comm.receive(D_sp, self.rank_a[a], tag=a, block=False)) assert a not in self.D_asp self.D_asp[a] = D_sp for a in my_outgoing_atom_indices: # Send matrix to new domain: D_sp = self.D_asp.pop(a) requests.append(self.gd.comm.send(D_sp, rank_a[a], tag=a, block=False)) self.gd.comm.waitall(requests) self.timer.stop('Redistribute') self.rank_a = rank_a def calculate_pseudo_density(self, wfs): """Calculate nt_sG from scratch. nt_sG will be equal to nct_G plus the contribution from wfs.add_to_density(). """ wfs.calculate_density_contribution(self.nt_sG) self.nt_sG += self.nct_G def update(self, wfs): self.timer.start('Density') self.timer.start('Pseudo density') self.calculate_pseudo_density(wfs) self.timer.stop('Pseudo density') self.timer.start('Atomic density matrices') wfs.calculate_atomic_density_matrices(self.D_asp) self.timer.stop('Atomic density matrices') self.timer.start('Multipole moments') comp_charge = self.calculate_multipole_moments() self.timer.stop('Multipole moments') if isinstance(wfs, LCAOWaveFunctions): self.timer.start('Normalize') self.normalize(comp_charge) self.timer.stop('Normalize') self.timer.start('Mix') self.mix(comp_charge) self.timer.stop('Mix') self.timer.stop('Density') def normalize(self, comp_charge=None): """Normalize pseudo density.""" if comp_charge is None: comp_charge = self.calculate_multipole_moments() pseudo_charge = self.gd.integrate(self.nt_sG).sum() if pseudo_charge + self.charge + comp_charge != 0: if pseudo_charge != 0: x = -(self.charge + comp_charge) / pseudo_charge self.nt_sG *= x else: # Use homogeneous background: self.nt_sG[:] = (self.charge + comp_charge) * self.gd.dv def calculate_pseudo_charge(self, comp_charge): self.nt_g = self.nt_sg.sum(axis=0) self.rhot_g = self.nt_g.copy() self.ghat.add(self.rhot_g, self.Q_aL) if debug: charge = self.finegd.integrate(self.rhot_g) + self.charge if abs(charge) > self.charge_eps: raise RuntimeError('Charge not conserved: excess=%.9f' % charge) def mix(self, comp_charge): if not self.mixer.mix_rho: self.mixer.mix(self) comp_charge = None self.interpolate(comp_charge) self.calculate_pseudo_charge(comp_charge) if self.mixer.mix_rho: self.mixer.mix(self) def interpolate(self, comp_charge=None): """Interpolate pseudo density to fine grid.""" if comp_charge is None: comp_charge = self.calculate_multipole_moments() if self.nt_sg is None: self.nt_sg = self.finegd.empty(self.nspins) for s in range(self.nspins): self.interpolator.apply(self.nt_sG[s], self.nt_sg[s]) # With periodic boundary conditions, the interpolation will # conserve the number of electrons. if not self.gd.pbc_c.all(): # With zero-boundary conditions in one or more directions, # this is not the case. pseudo_charge = -(self.charge + comp_charge) if abs(pseudo_charge) > 1.0e-14: x = pseudo_charge / self.finegd.integrate(self.nt_sg).sum() self.nt_sg *= x def calculate_multipole_moments(self): """Calculate multipole moments of compensation charges. Returns the total compensation charge in units of electron charge, so the number will be negative because of the dominating contribution from the nuclear charge.""" comp_charge = 0.0 self.Q_aL = {} for a, D_sp in self.D_asp.items(): Q_L = self.Q_aL[a] = np.dot(D_sp.sum(0), self.setups[a].Delta_pL) Q_L[0] += self.setups[a].Delta0 comp_charge += Q_L[0] return self.gd.comm.sum(comp_charge) * sqrt(4 * pi) def initialize_from_atomic_densities(self, basis_functions): """Initialize D_asp, nt_sG and Q_aL from atomic densities. nt_sG is initialized from atomic orbitals, and will be constructed with the specified magnetic moments and obeying Hund's rules if ``hund`` is true.""" # XXX does this work with blacs? What should be distributed? # Apparently this doesn't use blacs at all, so it's serial # with respect to the blacs distribution. That means it works # but is not particularly efficient (not that this is a time # consuming step) f_sM = np.empty((self.nspins, basis_functions.Mmax)) self.D_asp = {} f_asi = {} for a in basis_functions.atom_indices: c = self.charge / len(self.setups) # distribute on all atoms f_si = self.setups[a].calculate_initial_occupation_numbers( self.magmom_a[a], self.hund, charge=c, nspins=self.nspins) if a in basis_functions.my_atom_indices: self.D_asp[a] = self.setups[a].initialize_density_matrix(f_si) f_asi[a] = f_si self.nt_sG = self.gd.zeros(self.nspins) basis_functions.add_to_density(self.nt_sG, f_asi) self.nt_sG += self.nct_G self.calculate_normalized_charges_and_mix() def initialize_from_wavefunctions(self, wfs): """Initialize D_asp, nt_sG and Q_aL from wave functions.""" self.nt_sG = self.gd.empty(self.nspins) self.calculate_pseudo_density(wfs) self.D_asp = {} my_atom_indices = np.argwhere(wfs.rank_a == self.gd.comm.rank).ravel() for a in my_atom_indices: ni = self.setups[a].ni self.D_asp[a] = np.empty((self.nspins, ni * (ni + 1) // 2)) wfs.calculate_atomic_density_matrices(self.D_asp) self.calculate_normalized_charges_and_mix() def initialize_directly_from_arrays(self, nt_sG, D_asp): """Set D_asp and nt_sG directly.""" self.nt_sG = nt_sG self.D_asp = D_asp #self.calculate_normalized_charges_and_mix() # No calculate multipole moments? Tests will fail because of # improperly initialized mixer def calculate_normalized_charges_and_mix(self): comp_charge = self.calculate_multipole_moments() self.normalize(comp_charge) self.mix(comp_charge) def set_mixer(self, mixer): if mixer is not None: if self.nspins == 1 and isinstance(mixer, MixerSum): raise RuntimeError('Cannot use MixerSum with nspins==1') self.mixer = mixer else: if self.gd.pbc_c.any(): beta = 0.1 weight = 50.0 else: beta = 0.25 weight = 1.0 if self.nspins == 2: self.mixer = MixerSum(beta=beta, weight=weight) else: self.mixer = Mixer(beta=beta, weight=weight) self.mixer.initialize(self) def estimate_magnetic_moments(self): magmom_a = np.zeros_like(self.magmom_a) if self.nspins == 2: for a, D_sp in self.D_asp.items(): magmom_a[a] = np.dot(D_sp[0] - D_sp[1], self.setups[a].N0_p) self.gd.comm.sum(magmom_a) return magmom_a def get_correction(self, a, spin): """Integrated atomic density correction. Get the integrated correction to the pseuso density relative to the all-electron density. """ setup = self.setups[a] return sqrt(4 * pi) * ( np.dot(self.D_asp[a][spin], setup.Delta_pL[:, 0]) + setup.Delta0 / self.nspins) def get_density_array(self): XXX # XXX why not replace with get_spin_density and get_total_density? """Return pseudo-density array.""" if self.nspins == 2: return self.nt_sG else: return self.nt_sG[0] def get_all_electron_density(self, atoms, gridrefinement=2): """Return real all-electron density array.""" # Refinement of coarse grid, for representation of the AE-density if gridrefinement == 1: gd = self.gd n_sg = self.nt_sG.copy() elif gridrefinement == 2: gd = self.finegd if self.nt_sg is None: self.interpolate() n_sg = self.nt_sg.copy() elif gridrefinement == 4: # Extra fine grid gd = self.finegd.refine() # Interpolation function for the density: interpolator = Transformer(self.finegd, gd, 3) # Transfer the pseudo-density to the fine grid: n_sg = gd.empty(self.nspins) if self.nt_sg is None: self.interpolate() for s in range(self.nspins): interpolator.apply(self.nt_sg[s], n_sg[s]) else: raise NotImplementedError # Add corrections to pseudo-density to get the AE-density splines = {} phi_aj = [] phit_aj = [] nc_a = [] nct_a = [] for a, id in enumerate(self.setups.id_a): if id in splines: phi_j, phit_j, nc, nct = splines[id] else: # Load splines: phi_j, phit_j, nc, nct = self.setups[a].get_partial_waves()[:4] splines[id] = (phi_j, phit_j, nc, nct) phi_aj.append(phi_j) phit_aj.append(phit_j) nc_a.append([nc]) nct_a.append([nct]) # Create localized functions from splines phi = LFC(gd, phi_aj) phit = LFC(gd, phit_aj) nc = LFC(gd, nc_a) nct = LFC(gd, nct_a) spos_ac = atoms.get_scaled_positions() % 1.0 phi.set_positions(spos_ac) phit.set_positions(spos_ac) nc.set_positions(spos_ac) nct.set_positions(spos_ac) all_D_asp = [] for a, setup in enumerate(self.setups): D_sp = self.D_asp.get(a) if D_sp is None: ni = setup.ni D_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) if gd.comm.size > 1: gd.comm.broadcast(D_sp, self.rank_a[a]) all_D_asp.append(D_sp) for s in range(self.nspins): I_a = np.zeros(len(atoms)) nc.add1(n_sg[s], 1.0 / self.nspins, I_a) nct.add1(n_sg[s], -1.0 / self.nspins, I_a) phi.add2(n_sg[s], all_D_asp, s, 1.0, I_a) phit.add2(n_sg[s], all_D_asp, s, -1.0, I_a) for a, D_sp in self.D_asp.items(): setup = self.setups[a] I_a[a] -= ((setup.Nc - setup.Nct) / self.nspins + sqrt(4 * pi) * np.dot(D_sp[s], setup.Delta_pL[:, 0])) gd.comm.sum(I_a) N_c = gd.N_c g_ac = np.around(N_c * spos_ac).astype(int) % N_c - gd.beg_c for I, g_c in zip(I_a, g_ac): if (g_c >= 0).all() and (g_c < gd.n_c).all(): n_sg[s][tuple(g_c)] -= I / gd.dv return n_sg, gd def new_get_all_electron_density(self, atoms, gridrefinement=2): """Return real all-electron density array.""" # Refinement of coarse grid, for representation of the AE-density if gridrefinement == 1: gd = self.gd n_sg = self.nt_sG.copy() elif gridrefinement == 2: gd = self.finegd if self.nt_sg is None: self.interpolate() n_sg = self.nt_sg.copy() elif gridrefinement == 4: # Extra fine grid gd = self.finegd.refine() # Interpolation function for the density: interpolator = Transformer(self.finegd, gd, 3) # Transfer the pseudo-density to the fine grid: n_sg = gd.empty(self.nspins) if self.nt_sg is None: self.interpolate() for s in range(self.nspins): interpolator.apply(self.nt_sg[s], n_sg[s]) else: raise NotImplementedError # Add corrections to pseudo-density to get the AE-density splines = {} phi_aj = [] phit_aj = [] nc_a = [] nct_a = [] for a, id in enumerate(self.setups.id_a): if id in splines: phi_j, phit_j, nc, nct = splines[id] else: # Load splines: phi_j, phit_j, nc, nct = self.setups[a].get_partial_waves()[:4] splines[id] = (phi_j, phit_j, nc, nct) phi_aj.append(phi_j) phit_aj.append(phit_j) nc_a.append([nc]) nct_a.append([nct]) # Create localized functions from splines phi = BasisFunctions(gd, phi_aj) phit = BasisFunctions(gd, phit_aj) nc = LFC(gd, nc_a) nct = LFC(gd, nct_a) spos_ac = atoms.get_scaled_positions() % 1.0 phi.set_positions(spos_ac) phit.set_positions(spos_ac) nc.set_positions(spos_ac) nct.set_positions(spos_ac) I_sa = np.zeros((self.nspins, len(atoms))) a_W = np.empty(len(phi.M_W), np.int32) W = 0 for a in phi.atom_indices: nw = len(phi.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw rho_MM = np.zeros((phi.Mmax, phi.Mmax)) for s, I_a in enumerate(I_sa): M1 = 0 for a, setup in enumerate(self.setups): ni = setup.ni D_sp = self.D_asp.get(a) if D_sp is None: D_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) else: I_a[a] = ((setup.Nct - setup.Nc) / self.nspins - sqrt(4 * pi) * np.dot(D_sp[s], setup.Delta_pL[:, 0])) if gd.comm.size > 1: gd.comm.broadcast(D_sp, self.rank_a[a]) M2 = M1 + ni rho_MM[M1:M2, M1:M2] = unpack2(D_sp[s]) M1 = M2 phi.lfc.ae_valence_density_correction(rho_MM, n_sg[s], a_W, I_a) phit.lfc.ae_valence_density_correction(-rho_MM, n_sg[s], a_W, I_a) a_W = np.empty(len(nc.M_W), np.int32) W = 0 for a in nc.atom_indices: nw = len(nc.sphere_a[a].M_w) a_W[W:W + nw] = a W += nw scale = 1.0 / self.nspins for s, I_a in enumerate(I_sa): nc.lfc.ae_core_density_correction(scale, n_sg[s], a_W, I_a) nct.lfc.ae_core_density_correction(-scale, n_sg[s], a_W, I_a) gd.comm.sum(I_a) N_c = gd.N_c g_ac = np.around(N_c * spos_ac).astype(int) % N_c - gd.beg_c for I, g_c in zip(I_a, g_ac): if (g_c >= 0).all() and (g_c < gd.n_c).all(): n_sg[s][tuple(g_c)] -= I / gd.dv return n_sg, gd if extra_parameters.get('usenewlfc', True): get_all_electron_density = new_get_all_electron_density def estimate_memory(self, mem): nspins = self.nspins nbytes = self.gd.bytecount() nfinebytes = self.finegd.bytecount() arrays = mem.subnode('Arrays') for name, size in [('nt_sG', nbytes * nspins), ('nt_sg', nfinebytes * nspins), ('nt_g', nfinebytes), ('rhot_g', nfinebytes), ('nct_G', nbytes)]: arrays.subnode(name, size) lfs = mem.subnode('Localized functions') for name, obj in [('nct', self.nct), ('ghat', self.ghat)]: obj.estimate_memory(lfs.subnode(name)) self.mixer.estimate_memory(mem.subnode('Mixer'), self.gd) # TODO # The implementation of interpolator memory use is not very # accurate; 20 MiB vs 13 MiB estimated in one example, probably # worse for parallel calculations. self.interpolator.estimate_memory(mem.subnode('Interpolator')) def get_spin_contamination(self, atoms, majority_spin=0): """Calculate the spin contamination. Spin contamination is defined as the integral over the spin density difference, where it is negative (i.e. the minority spin density is larger than the majority spin density. """ if majority_spin == 0: smaj = 0 smin = 1 else: smaj = 1 smin = 0 nt_sg, gd = self.get_all_electron_density(atoms) dt_sg = nt_sg[smin] - nt_sg[smaj] dt_sg = np.where(dt_sg > 0, dt_sg, 0.0) return gd.integrate(dt_sg)
calc = GPAW(mode=PW(), xc='PBE', kpts=kpts, parallel={'band': 1}, eigensolver='cg', txt='na2o4.txt') bulk.set_calculator(calc) try: bulk.get_potential_energy() except ConvergenceError: pass assert not calc.scf.converged del bulk.calc calc1 = GPAW(mode=PW(), xc='PBE', kpts=kpts, parallel={'band': 1}, eigensolver='cg', txt='na2o4.txt') calc1.set(mixer=Mixer(0.10, 2)) calc1.set(txt='na2o4_m1.txt') bulk.set_calculator(calc1) bulk.get_potential_energy()
from gpaw import GPAW from gpaw.mixer import Mixer from gpaw.test import equal from gpaw.test import gen symbol = 'C' result = -224.200276535 electrons = 48 xcname = 'LDA_K_TF+LDA_X' g = gen(symbol, xcname=xcname, scalarrel=False, orbital_free=True) h = 0.14 a = 2.8 atoms = bulk(symbol, 'diamond', a=a, cubic=True) # Generate diamond mixer = Mixer(0.1, 5) calc = GPAW(h=h, xc=xcname, maxiter=120, eigensolver = 'cg', mixer=mixer) atoms.set_calculator(calc) e = atoms.get_potential_energy() n = calc.get_all_electron_density() dv = atoms.get_volume() / calc.get_number_of_grid_points().prod()
def read(self, reader): """Read state from file.""" r = reader version = r['version'] assert version >= 0.3 self.xc = r['XCFunctional'] self.nbands = r.dimension('nbands') self.spinpol = (r.dimension('nspins') == 2) bzk_kc = r.get('BZKPoints', broadcast=True) if r.has_array('NBZKPoints'): self.kpts = r.get('NBZKPoints', broadcast=True) if r.has_array('MonkhorstPackOffset'): offset_c = r.get('MonkhorstPackOffset', broadcast=True) if offset_c.any(): self.kpts = monkhorst_pack(self.kpts) + offset_c else: self.kpts = bzk_kc if version < 4: self.symmetry = usesymm2symmetry(r['UseSymmetry']) else: self.symmetry = {'point_group': r['SymmetryOnSwitch'], 'symmorphic': r['SymmetrySymmorphicSwitch'], 'time_reversal': r['SymmetryTimeReversalSwitch'], 'tolerance': r['SymmetryToleranceCriterion']} try: self.basis = r['BasisSet'] except KeyError: pass if version >= 2: try: h = r['GridSpacing'] except KeyError: # CMR can't handle None! h = None if h is not None: self.h = Bohr * h if r.has_array('GridPoints'): self.gpts = r.get('GridPoints') else: if version >= 0.9: h = r['GridSpacing'] else: h = None gpts = ((r.dimension('ngptsx') + 1) // 2 * 2, (r.dimension('ngptsy') + 1) // 2 * 2, (r.dimension('ngptsz') + 1) // 2 * 2) if h is None: self.gpts = gpts else: self.h = Bohr * h self.lmax = r['MaximumAngularMomentum'] self.setups = r['SetupTypes'] self.fixdensity = r['FixDensity'] if version <= 0.4: # Old version: XXX print(('# Warning: Reading old version 0.3/0.4 restart files ' + 'will be disabled some day in the future!')) self.convergence['eigenstates'] = r['Tolerance'] else: nbtc = r['NumberOfBandsToConverge'] if not isinstance(nbtc, (int, str)): # The string 'all' was eval'ed to the all() function! nbtc = 'all' if version < 5: force_crit = None else: force_crit = r['ForcesConvergenceCriterion'] if force_crit is not None: force_crit *= (Hartree / Bohr) self.convergence = {'density': r['DensityConvergenceCriterion'], 'energy': r['EnergyConvergenceCriterion'] * Hartree, 'eigenstates': r['EigenstatesConvergenceCriterion'], 'bands': nbtc, 'forces': force_crit} if version < 1: # Volume per grid-point: dv = (abs(np.linalg.det(r.get('UnitCell'))) / (gpts[0] * gpts[1] * gpts[2])) self.convergence['eigenstates'] *= Hartree**2 * dv if version <= 0.6: mixer = 'Mixer' weight = r['MixMetric'] elif version <= 0.7: mixer = r['MixClass'] weight = r['MixWeight'] metric = r['MixMetric'] if metric is None: weight = 1.0 else: mixer = r['MixClass'] weight = r['MixWeight'] if mixer == 'Mixer': from gpaw.mixer import Mixer elif mixer == 'MixerSum': from gpaw.mixer import MixerSum as Mixer elif mixer == 'MixerSum2': from gpaw.mixer import MixerSum2 as Mixer elif mixer == 'MixerDif': from gpaw.mixer import MixerDif as Mixer elif mixer == 'DummyMixer': from gpaw.mixer import DummyMixer as Mixer else: Mixer = None if Mixer is None: self.mixer = None else: self.mixer = Mixer(r['MixBeta'], r['MixOld'], weight) if version == 0.3: # Old version: XXX print(('# Warning: Reading old version 0.3 restart files is ' + 'dangerous and will be disabled some day in the future!')) self.stencils = (2, 3) self.charge = 0.0 fixmom = False else: self.stencils = (r['KohnShamStencil'], r['InterpolationStencil']) if r['PoissonStencil'] == 999: self.poissonsolver = FFTPoissonSolver() else: self.poissonsolver = PoissonSolver(nn=r['PoissonStencil']) self.charge = r['Charge'] fixmom = r['FixMagneticMoment'] self.occupations = FermiDirac(r['FermiWidth'] * Hartree, fixmagmom=fixmom) try: self.mode = r['Mode'] except KeyError: self.mode = 'fd' if self.mode == 'pw': self.mode = PW(ecut=r['PlaneWaveCutoff'] * Hartree) if len(bzk_kc) == 1 and not bzk_kc[0].any(): # Gamma point only: if r['DataType'] == 'Complex': self.dtype = complex