def main(N=73, seed=42, mprocs=2, nprocs=2, dtype=float): gen = np.random.RandomState(seed) grid = BlacsGrid(world, mprocs, nprocs) if (dtype==complex): epsilon = 1.0j else: epsilon = 0.0 # Create descriptors for matrices on master: glob = grid.new_descriptor(N, N, N, N) # print globA.asarray() # Populate matrices local to master: H0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape) S0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape) C0 = glob.empty(dtype=dtype) if rank == 0: # Complex case must have real numbers on the diagonal. # We make a simple complex Hermitian matrix below. H0 = H0 + epsilon * (0.1*np.tri(N, N, k= -N // nprocs) + 0.3*np.tri(N, N, k=-1)) S0 = S0 + epsilon * (0.2*np.tri(N, N, k= -N // nprocs) + 0.4*np.tri(N, N, k=-1)) # Make matrices symmetric rk(1.0, H0.copy(), 0.0, H0) rk(1.0, S0.copy(), 0.0, S0) # Overlap matrix must be semi-positive definite S0 = S0 + 50.0*np.eye(N, N, 0) # Hamiltonian is usually diagonally dominant H0 = H0 + 75.0*np.eye(N, N, 0) C0 = S0.copy() # Local result matrices W0 = np.empty((N),dtype=float) W0_g = np.empty((N),dtype=float) # Calculate eigenvalues if rank == 0: diagonalize(H0.copy(), W0) general_diagonalize(H0.copy(), W0_g, S0.copy()) inverse_cholesky(C0) # result returned in lower triangle # tri2full(C0) # symmetrize assert glob.check(H0) and glob.check(S0) and glob.check(C0) # Create distributed destriptors with various block sizes: dist = grid.new_descriptor(N, N, 8, 8) # Distributed matrices: # We can use empty here, but end up with garbage on # on the other half of the triangle when we redistribute. # This is fine because ScaLAPACK does not care. H = dist.empty(dtype=dtype) S = dist.empty(dtype=dtype) Z = dist.empty(dtype=dtype) C = dist.empty(dtype=dtype) # Eigenvalues are non-BLACS matrices W = np.empty((N), dtype=float) W_dc = np.empty((N), dtype=float) W_mr3 = np.empty((N), dtype=float) W_g = np.empty((N), dtype=float) W_g_dc = np.empty((N), dtype=float) W_g_mr3 = np.empty((N), dtype=float) Glob2dist = Redistributor(world, glob, dist) Glob2dist.redistribute(H0, H, uplo='L') Glob2dist.redistribute(S0, S, uplo='L') Glob2dist.redistribute(S0, C, uplo='L') # C0 was previously overwritten # we don't test the expert drivers anymore since there # might be a buffer overflow error ## scalapack_diagonalize_ex(dist, H.copy(), Z, W, 'L') scalapack_diagonalize_dc(dist, H.copy(), Z, W_dc, 'L') ## scalapack_diagonalize_mr3(dist, H.copy(), Z, W_mr3, 'L') ## scalapack_general_diagonalize_ex(dist, H.copy(), S.copy(), Z, W_g, 'L') scalapack_general_diagonalize_dc(dist, H.copy(), S.copy(), Z, W_g_dc, 'L') ## scalapack_general_diagonalize_mr3(dist, H.copy(), S.copy(), Z, W_g_mr3, 'L') scalapack_inverse_cholesky(dist, C, 'L') # Undo redistribute C_test = glob.empty(dtype=dtype) Dist2glob = Redistributor(world, dist, glob) Dist2glob.redistribute(C, C_test) if rank == 0: ## diag_ex_err = abs(W - W0).max() diag_dc_err = abs(W_dc - W0).max() ## diag_mr3_err = abs(W_mr3 - W0).max() ## general_diag_ex_err = abs(W_g - W0_g).max() general_diag_dc_err = abs(W_g_dc - W0_g).max() ## general_diag_mr3_err = abs(W_g_mr3 - W0_g).max() inverse_chol_err = abs(C_test-C0).max() ## print 'diagonalize ex err', diag_ex_err print 'diagonalize dc err', diag_dc_err ## print 'diagonalize mr3 err', diag_mr3_err ## print 'general diagonalize ex err', general_diag_ex_err print 'general diagonalize dc err', general_diag_dc_err ## print 'general diagonalize mr3 err', general_diag_mr3_err print 'inverse chol err', inverse_chol_err else: ## diag_ex_err = 0.0 diag_dc_err = 0.0 ## diag_mr3_err = 0.0 ## general_diag_ex_err = 0.0 general_diag_dc_err = 0.0 ## general_diag_mr3_err = 0.0 inverse_chol_err = 0.0 # We don't like exceptions on only one cpu ## diag_ex_err = world.sum(diag_ex_err) diag_dc_err = world.sum(diag_dc_err) ## diag_mr3_err = world.sum(diag_mr3_err) ## general_diag_ex_err = world.sum(general_diag_ex_err) general_diag_dc_err = world.sum(general_diag_dc_err) ## general_diag_mr3_err = world.sum(general_diag_mr3_err) inverse_chol_err = world.sum(inverse_chol_err) ## assert diag_ex_err < tol assert diag_dc_err < tol ## assert diag_mr3_err < tol ## assert general_diag_ex_err < tol assert general_diag_dc_err < tol ## assert general_diag_mr3_err < tol assert inverse_chol_err < tol
def main(N=72, seed=42, mprocs=2, nprocs=2, dtype=float): gen = np.random.RandomState(seed) grid = BlacsGrid(world, mprocs, nprocs) if (dtype == complex): epsilon = 1.0j else: epsilon = 0.0 # Create descriptors for matrices on master: glob = grid.new_descriptor(N, N, N, N) # print globA.asarray() # Populate matrices local to master: H0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape) S0 = glob.zeros(dtype=dtype) + gen.rand(*glob.shape) C0 = glob.empty(dtype=dtype) if rank == 0: # Complex case must have real numbers on the diagonal. # We make a simple complex Hermitian matrix below. H0 = H0 + epsilon * (0.1 * np.tri(N, N, k=-N // nprocs) + 0.3 * np.tri(N, N, k=-1)) S0 = S0 + epsilon * (0.2 * np.tri(N, N, k=-N // nprocs) + 0.4 * np.tri(N, N, k=-1)) # Make matrices symmetric rk(1.0, H0.copy(), 0.0, H0) rk(1.0, S0.copy(), 0.0, S0) # Overlap matrix must be semi-positive definite S0 = S0 + 50.0 * np.eye(N, N, 0) # Hamiltonian is usually diagonally dominant H0 = H0 + 75.0 * np.eye(N, N, 0) C0 = S0.copy() S0_inv = S0.copy() # Local result matrices W0 = np.empty((N), dtype=float) W0_g = np.empty((N), dtype=float) # Calculate eigenvalues / other serial results if rank == 0: diagonalize(H0.copy(), W0) general_diagonalize(H0.copy(), W0_g, S0.copy()) inverse_cholesky(C0) # result returned in lower triangle tri2full(S0_inv, 'L') S0_inv = inv(S0_inv) # tri2full(C0) # symmetrize assert glob.check(H0) and glob.check(S0) and glob.check(C0) # Create distributed destriptors with various block sizes: dist = grid.new_descriptor(N, N, 8, 8) # Distributed matrices: # We can use empty here, but end up with garbage on # on the other half of the triangle when we redistribute. # This is fine because ScaLAPACK does not care. H = dist.empty(dtype=dtype) S = dist.empty(dtype=dtype) Sinv = dist.empty(dtype=dtype) Z = dist.empty(dtype=dtype) C = dist.empty(dtype=dtype) Sinv = dist.empty(dtype=dtype) # Eigenvalues are non-BLACS matrices W = np.empty((N), dtype=float) W_dc = np.empty((N), dtype=float) W_mr3 = np.empty((N), dtype=float) W_g = np.empty((N), dtype=float) W_g_dc = np.empty((N), dtype=float) W_g_mr3 = np.empty((N), dtype=float) Glob2dist = Redistributor(world, glob, dist) Glob2dist.redistribute(H0, H, uplo='L') Glob2dist.redistribute(S0, S, uplo='L') Glob2dist.redistribute(S0, C, uplo='L') # C0 was previously overwritten Glob2dist.redistribute(S0, Sinv, uplo='L') # we don't test the expert drivers anymore since there # might be a buffer overflow error ## scalapack_diagonalize_ex(dist, H.copy(), Z, W, 'L') scalapack_diagonalize_dc(dist, H.copy(), Z, W_dc, 'L') ## scalapack_diagonalize_mr3(dist, H.copy(), Z, W_mr3, 'L') ## scalapack_general_diagonalize_ex(dist, H.copy(), S.copy(), Z, W_g, 'L') scalapack_general_diagonalize_dc(dist, H.copy(), S.copy(), Z, W_g_dc, 'L') ## scalapack_general_diagonalize_mr3(dist, H.copy(), S.copy(), Z, W_g_mr3, 'L') scalapack_inverse_cholesky(dist, C, 'L') if dtype == complex: # Only supported for complex for now scalapack_inverse(dist, Sinv, 'L') # Undo redistribute C_test = glob.empty(dtype=dtype) Sinv_test = glob.empty(dtype=dtype) Dist2glob = Redistributor(world, dist, glob) Dist2glob.redistribute(C, C_test) Dist2glob.redistribute(Sinv, Sinv_test) if rank == 0: ## diag_ex_err = abs(W - W0).max() diag_dc_err = abs(W_dc - W0).max() ## diag_mr3_err = abs(W_mr3 - W0).max() ## general_diag_ex_err = abs(W_g - W0_g).max() general_diag_dc_err = abs(W_g_dc - W0_g).max() ## general_diag_mr3_err = abs(W_g_mr3 - W0_g).max() inverse_chol_err = abs(C_test - C0).max() tri2full(Sinv_test, 'L') inverse_err = abs(Sinv_test - S0_inv).max() ## print 'diagonalize ex err', diag_ex_err print('diagonalize dc err', diag_dc_err) ## print 'diagonalize mr3 err', diag_mr3_err ## print 'general diagonalize ex err', general_diag_ex_err print('general diagonalize dc err', general_diag_dc_err) ## print 'general diagonalize mr3 err', general_diag_mr3_err print('inverse chol err', inverse_chol_err) if dtype == complex: print('inverse err', inverse_err) else: ## diag_ex_err = 0.0 diag_dc_err = 0.0 ## diag_mr3_err = 0.0 ## general_diag_ex_err = 0.0 general_diag_dc_err = 0.0 ## general_diag_mr3_err = 0.0 inverse_chol_err = 0.0 inverse_err = 0.0 # We don't like exceptions on only one cpu ## diag_ex_err = world.sum(diag_ex_err) diag_dc_err = world.sum(diag_dc_err) ## diag_mr3_err = world.sum(diag_mr3_err) ## general_diag_ex_err = world.sum(general_diag_ex_err) general_diag_dc_err = world.sum(general_diag_dc_err) ## general_diag_mr3_err = world.sum(general_diag_mr3_err) inverse_chol_err = world.sum(inverse_chol_err) inverse_err = world.sum(inverse_err) ## assert diag_ex_err < tol assert diag_dc_err < tol ## assert diag_mr3_err < tol ## assert general_diag_ex_err < tol assert general_diag_dc_err < tol ## assert general_diag_mr3_err < tol assert inverse_chol_err < tol if dtype == complex: assert inverse_err < tol
def general_diagonalize_dc(self, H_mm, S_mm, C_mm, eps_M, UL='L'): """See documentation in gpaw/utilities/blacs.py.""" scalapack_general_diagonalize_dc(self, H_mm, S_mm, C_mm, eps_M, UL)