示例#1
0
文件: emissions.py 项目: ialong/GPt
    def __init__(self,
                 latent_dim,
                 Z,
                 mean_function=None,
                 kern=None,
                 likelihood=None,
                 name=None):
        super().__init__(name=name)
        self.latent_dim = latent_dim
        self.obs_dim = 1
        self.n_ind_pts = Z.shape[0]

        self.mean_function = mean_function or mean_fns.Zero(
            output_dim=self.obs_dim)
        self.kern = kern or gp.kernels.RBF(self.latent_dim, ARD=True)
        self.likelihood = likelihood or gp.likelihoods.Gaussian()
        self.Z = gp.features.InducingPoints(Z)
        self.Umu = gp.Param(np.zeros(
            (self.n_ind_pts, self.latent_dim)))  # (Lm^-1)(Umu - m(Z))
        self.Ucov_chol = gp.Param(np.tile(
            np.eye(self.n_ind_pts)[None, ...], [self.obs_dim, 1, 1]),
                                  transform=gp.transforms.LowerTriangular(
                                      self.n_ind_pts,
                                      num_matrices=self.obs_dim,
                                      squeeze=False))  # (Lm^-1)Lu
示例#2
0
def zero_mean():
    return mean_functions.Zero(output_dim=Data.D_out)
示例#3
0
def markov_gauss():
    cov_params = rng.randn(num_data + 1, D_in, 2 * D_in) / 2.0  # (N+1)xDx2D
    Xcov = cov_params @ np.transpose(cov_params, (0, 2, 1))  # (N+1)xDxD
    Xcross = cov_params[:-1] @ np.transpose(cov_params[1:], (0, 2, 1))  # NxDxD
    Xcross = np.concatenate((Xcross, np.zeros((1, D_in, D_in))),
                            0)  # (N+1)xDxD
    Xcov = np.stack([Xcov, Xcross])  # 2x(N+1)xDxD
    return MarkovGaussian(Xmu_markov, ctt(Xcov))


_means = {
    "lin": mf.Linear(A=rng.randn(D_in, D_out), b=rng.randn(D_out)),
    "identity": mf.Identity(input_dim=D_in),
    "const": mf.Constant(c=rng.randn(D_out)),
    "zero": mf.Zero(output_dim=D_out),
}

_distrs = {
    "gauss":
    Gaussian(Xmu, Xcov),
    "dirac_gauss":
    Gaussian(Xmu, np.zeros((num_data, D_in, D_in))),
    "gauss_diag":
    DiagonalGaussian(Xmu, rng.rand(num_data, D_in)),
    "dirac_diag":
    DiagonalGaussian(Xmu, np.zeros((num_data, D_in))),
    "dirac_markov_gauss":
    MarkovGaussian(Xmu_markov, np.zeros((2, num_data + 1, D_in, D_in))),
    "markov_gauss":
    markov_gauss(),
示例#4
0
def markov_gauss():
    cov_params = rng.randn(num_data + 1, D_in, 2 * D_in) / 2.  # (N+1)xDx2D
    Xcov = cov_params @ np.transpose(cov_params, (0, 2, 1))  # (N+1)xDxD
    Xcross = cov_params[:-1] @ np.transpose(cov_params[1:], (0, 2, 1))  # NxDxD
    Xcross = np.concatenate((Xcross, np.zeros((1, D_in, D_in))),
                            0)  # (N+1)xDxD
    Xcov = np.stack([Xcov, Xcross])  # 2x(N+1)xDxD
    return MarkovGaussian(Xmu_markov, ctt(Xcov))


_means = {
    'lin': mf.Linear(A=rng.randn(D_in, D_out), b=rng.randn(D_out)),
    'identity': mf.Identity(input_dim=D_in),
    'const': mf.Constant(c=rng.randn(D_out)),
    'zero': mf.Zero(output_dim=D_out)
}

_distrs = {
    'gauss':
    Gaussian(Xmu, Xcov),
    'dirac_gauss':
    Gaussian(Xmu, np.zeros((num_data, D_in, D_in))),
    'gauss_diag':
    DiagonalGaussian(Xmu, rng.rand(num_data, D_in)),
    'dirac_diag':
    DiagonalGaussian(Xmu, np.zeros((num_data, D_in))),
    'dirac_markov_gauss':
    MarkovGaussian(Xmu_markov, np.zeros((2, num_data + 1, D_in, D_in))),
    'markov_gauss':
    markov_gauss()
示例#5
0
class Data:
    rng = np.random.RandomState(1)
    num_data = 5
    num_ind = 4
    D_in = 2
    D_out = 2

    Xmu = rng.randn(num_data, D_in)
    L = gen_L(rng, num_data, D_in, D_in)
    Xvar = np.array([l @ l.T for l in L])
    Z = rng.randn(num_ind, D_in)

    # distributions don't need to be compiled (No Parameter objects)
    # but the members should be Tensors created in the same graph
    graph = tf.Graph()
    with test_util.session_context(graph) as sess:
        gauss = Gaussian(tf.constant(Xmu), tf.constant(Xvar))
        dirac = Gaussian(tf.constant(Xmu),
                         tf.constant(np.zeros((num_data, D_in, D_in))))
        gauss_diag = DiagonalGaussian(tf.constant(Xmu),
                                      tf.constant(rng.rand(num_data, D_in)))
        dirac_diag = DiagonalGaussian(tf.constant(Xmu),
                                      tf.constant(np.zeros((num_data, D_in))))
        dirac_markov_gauss = MarkovGaussian(
            tf.constant(Xmu), tf.constant(np.zeros((2, num_data, D_in, D_in))))

        # create the covariance for the pairwise markov-gaussian
        dummy_gen = lambda rng, n, *shape: np.array(
            [rng.randn(*shape) for _ in range(n)])
        L_mg = dummy_gen(rng, num_data, D_in, 2 * D_in)  # N+1 x D x 2D
        LL = np.concatenate((L_mg[:-1], L_mg[1:]), 1)  # N x 2D x 2D
        Xcov = LL @ np.transpose(LL, (0, 2, 1))
        Xc = np.concatenate((Xcov[:, :D_in, :D_in], Xcov[-1:, D_in:, D_in:]),
                            0)  # N+1 x D x D
        Xcross = np.concatenate(
            (Xcov[:, :D_in, D_in:], np.zeros(
                (1, D_in, D_in))), 0)  # N+1 x D x D
        Xcc = np.stack([Xc, Xcross])  # 2 x N+1 x D x D

        markov_gauss = MarkovGaussian(Xmu, Xcc)

    with gpflow.decors.defer_build():
        # features
        ip = features.InducingPoints(Z)
        # kernels
        rbf_prod_seperate_dims = kernels.Product([
            kernels.RBF(1,
                        variance=rng.rand(),
                        lengthscales=rng.rand(),
                        active_dims=[0]),
            kernels.RBF(1,
                        variance=rng.rand(),
                        lengthscales=rng.rand(),
                        active_dims=[1])
        ])

        rbf_lin_sum = kernels.Sum([
            kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand()),
            kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand()),
            kernels.Linear(D_in, variance=rng.rand())
        ])

        rbf = kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand())

        lin_kern = kernels.Linear(D_in, variance=rng.rand())

        # mean functions
        lin = mean_functions.Linear(rng.rand(D_in, D_out), rng.rand(D_out))
        iden = mean_functions.Identity(
            D_in)  # Note: Identity can only be used if Din == Dout
        zero = mean_functions.Zero(output_dim=D_out)
        const = mean_functions.Constant(rng.rand(D_out))