def create_model(): kernel = create_kernel() model = gpflow.models.SVGP( kernel=kernel, likelihood=gpflow.likelihoods.Gaussian(variance_lower_bound=None), inducing_variable=Data.Z, q_diag=True, ) set_trainable(model.q_mu, False) return model
def create_kernel(): kern = gpflow.kernels.SquaredExponential(lengthscales=Data.ls, variance=Data.var) set_trainable(kern.lengthscales, False) return kern