def main(): env = GaussianEnvironment( bo_param2model_param_dic=bo_param2model_param_dic, result_filename=result_filename, output_dir=output_dir, reload=reload) agent = GMRF_BO(bo_param_list, env, GAMMA=GAMMA, GAMMA0=GAMMA0, GAMMA_Y=GAMMA_Y, ALPHA=ALPHA, is_edge_normalized=IS_EDGE_NORMALIZED, gt_available=True, n_early_stopping=N_EARLY_STOPPING, burnin=BURNIN, normalize_output=NORMALIZE_OUTPUT, update_hyperparam_func=UPDATE_HYPERPARAM_FUNC, initial_k=INITIAL_K, initial_theta=INITIAL_THETA, acquisition_func=ACQUISITION_FUNC, acquisition_param_dic=ACQUISITION_PARAM_DIC) # for i in tqdm(range(n_iter)): for i in range(n_iter): try: flg = agent.learn() agent.plot(output_dir=output_dir) # agent.save_mu_sigma_csv() if flg == False: print("Early Stopping!!!") print(agent.bestX) print(agent.bestT) break except KeyboardInterrupt: print("Learnig process was forced to stop!") break #plot_loss(agent.point_info_manager.T_seq, 'reward.png') subprocess.call([ "./convert_pngs2gif.sh demo_%s_eps_%f.gif" % (ACQUISITION_FUNC, ACQUISITION_PARAM_DIC["eps"]) ], shell=True) os.system("mv ./output/*.gif ./")
def main(): # env = SinEnvironment(bo_param2model_param_dic=bo_param2model_param_dic, result_filename=result_filename, # output_dir=output_dir, # reload=reload) env = OneDimGaussianEnvironment(bo_param2model_param_dic=bo_param2model_param_dic, result_filename=result_filename, output_dir=output_dir, reload=reload) agent = GMRF_BO(bo_param_list, env, GAMMA=GAMMA, GAMMA0=GAMMA0, GAMMA_Y=GAMMA_Y, ALPHA=ALPHA, is_edge_normalized=IS_EDGE_NORMALIZED, gt_available=True, n_early_stopping=N_EARLY_STOPPING, burnin=BURNIN, normalize_output=NORMALIZE_OUTPUT, update_hyperparam_func=UPDATE_HYPERPARAM_FUNC, initial_k=INITIAL_K, initial_theta=INITIAL_THETA, acquisition_func=ACQUISITION_FUNC, acquisition_param_dic=ACQUISITION_PARAM_DIC) # # agent = GP_BO(bo_param_list, env, gt_available=True, my_kernel=kernel, burnin=BURNIN, # normalize_output=NORMALIZE_OUTPUT, acquisition_func=ACQUISITION_FUNC, # acquisition_param_dic=ACQUISITION_PARAM_DIC) # for i in tqdm(range(n_iter)): for i in range(n_iter): try: flg = agent.learn() agent.plot(output_dir=output_dir) agent.save_mu_sigma_csv() if flg == False: print("Early Stopping!!!") print(agent.bestX) print(agent.bestT) break except KeyboardInterrupt: print("Learnig process was forced to stop!") break plot_1dim(agent.point_info_manager.T_seq, 'reward.png')
def singleTest(ACQUISITION_FUNC, trialCount): print("%s: trial %d" % (ACQUISITION_FUNC, trialCount)) OUTPUT_DIR = os.path.join(os.getcwd(), 'output_%s' % ACQUISITION_FUNC) ######################## ### temporary ### if os.path.exists(OUTPUT_DIR): shutil.rmtree(OUTPUT_DIR) ################## RESULT_FILENAME = os.path.join( OUTPUT_DIR, "gaussian_result_4dim_%s_trialCount_%d.csv" % (ACQUISITION_FUNC, trialCount)) print('GAMMA: ', GAMMA) print('GAMMA_Y: ', GAMMA_Y) print('GAMMA0:', GAMMA0) mkdir_if_not_exist(OUTPUT_DIR) param_names = sorted( [x.replace('.csv', '') for x in os.listdir(PARAMETER_DIR)]) bo_param2model_param_dic = {} bo_param_list = [] for param_name in param_names: param_df = pd.read_csv(os.path.join(PARAMETER_DIR, param_name + '.csv'), dtype=str) bo_param_list.append(param_df[param_name].values) param_df.set_index(param_name, inplace=True) bo_param2model_param_dic[param_name] = param_df.to_dict()['gp_' + param_name] env = FourDimGaussianEnvironment( bo_param2model_param_dic=bo_param2model_param_dic, result_filename=RESULT_FILENAME, output_dir=OUTPUT_DIR, reload=False) agent = GMRF_BO(bo_param_list, env, GAMMA=GAMMA, GAMMA0=GAMMA0, GAMMA_Y=GAMMA_Y, ALPHA=ALPHA, is_edge_normalized=IS_EDGE_NORMALIZED, gt_available=True, n_early_stopping=N_EARLY_STOPPING, burnin=BURNIN, normalize_output=NORMALIZE_OUTPUT, update_hyperparam_func=UPDATE_HYPERPARAM_FUNC, initial_k=INITIAL_K, initial_theta=INITIAL_THETA, acquisition_func=ACQUISITION_FUNC, acquisition_param_dic=ACQUISITION_PARAM_DIC) nIter = 500 for i in range(nIter): flg = agent.learn(drop=True if i < nIter - 1 else False) if not flg: print("Early Stopping!!!") print(agent.bestX) print(agent.bestT) break os.system("mv %s/*.csv ./eval/" % OUTPUT_DIR)
def singleTest(ACQUISITION_FUNC, trialCount): print("%s: trial %d" % (ACQUISITION_FUNC, trialCount)) OUTPUT_DIR = os.path.join(os.getcwd(), 'output_%s' % ACQUISITION_FUNC) # ### temporary ### if os.path.exists(OUTPUT_DIR): shutil.rmtree(OUTPUT_DIR) ################## RESULT_FILENAME = os.path.join( OUTPUT_DIR, "gaussian_result_1dim_%s_trialCount_%d.csv" % (ACQUISITION_FUNC, trialCount)) np.random.seed(int(time.time())) print('GAMMA: ', GAMMA) print('GAMMA_Y: ', GAMMA_Y) print('GAMMA0:', GAMMA0) mkdir_if_not_exist(OUTPUT_DIR) param_names = sorted( [x.replace('.csv', '') for x in os.listdir(PARAMETER_DIR)]) bo_param2model_param_dic = {} bo_param_list = [] for param_name in param_names: # param_name is a param file's name param_df = pd.read_csv( os.path.join(PARAMETER_DIR, param_name + '.csv'), dtype=str) #makes index column type str instead of float # always read the column of the same name as the file name -- param_name bo_param_list.append(param_df[param_name].values) # param_df has a column of its csv file name, e.g. "x" # and this column is set as the index column param_df.set_index(param_name, inplace=True) # dict: param_file name -> column dict (the column with the name "bo_"+param_file name) # column dict: index column element -> cell value #index column is type str bo_param2model_param_dic[param_name] = param_df.to_dict()['bo_' + param_name] # bo_param_list is a list of every "bo_" column in all the param files of param_names # print("bo_param_list", bo_param_list) # env = SinEnvironment(bo_param2model_param_dic=bo_param2model_param_dic, # result_filename=RESULT_FILENAME, # output_dir=OUTPUT_DIR, # reload=RELOAD) env = OneDimGaussianEnvironment( bo_param2model_param_dic=bo_param2model_param_dic, result_filename=RESULT_FILENAME, output_dir=OUTPUT_DIR, reload=RELOAD) agent = GMRF_BO(bo_param_list, env, GAMMA=GAMMA, GAMMA0=GAMMA0, GAMMA_Y=GAMMA_Y, ALPHA=ALPHA, is_edge_normalized=IS_EDGE_NORMALIZED, gt_available=True, n_early_stopping=N_EARLY_STOPPING, burnin=BURNIN, normalize_output=NORMALIZE_OUTPUT, update_hyperparam_func=UPDATE_HYPERPARAM_FUNC, initial_k=INITIAL_K, initial_theta=INITIAL_THETA, acquisition_func=ACQUISITION_FUNC, acquisition_param_dic=ACQUISITION_PARAM_DIC) # agent = GP_BO(bo_param_list, env, # gt_available=True, # my_kernel=kernel, # burnin=BURNIN, # normalize_output=NORMALIZE_OUTPUT, # acquisition_func=ACQUISITION_FUNC, # acquisition_param_dic=ACQUISITION_PARAM_DIC) nIter = 1000 for i in range(nIter): flg = agent.learn() #agent.plot(output_dir=OUTPUT_DIR) #plotting causes deadlock among processes #agent.save_mu_sigma_csv() #this line causes deadlock among processes (I/O contention) if flg == False: print("Early Stopping!!!") print("bestX =", agent.bestX) print("bestT =", agent.bestT) break #plot_1dim(agent.point_info_manager.T_seq, 'reward.png') #subprocess.call(["./convert_pngs2gif.sh ./output/res*.png demo_%s_iterCount_%d.gif"%(ACQUISITION_FUNC, iterCount)]) #os.system("mv %s/*.gif ./eval/"%OUTPUT_DIR) os.system("mv %s/*.csv ./eval/" % OUTPUT_DIR)