def test_pickle(): """Check pickability""" # Check the regressor est = SymbolicRegressor(generations=2, random_state=0) est.fit(boston.data[:100, :], boston.target[:100]) score = est.score(boston.data[500:, :], boston.target[500:]) pickle_object = pickle.dumps(est) est2 = pickle.loads(pickle_object) assert_equal(type(est2), est.__class__) score2 = est2.score(boston.data[500:, :], boston.target[500:]) assert_equal(score, score2) # Check the transformer est = SymbolicTransformer(generations=2, random_state=0) est.fit(boston.data[:100, :], boston.target[:100]) X_new = est.transform(boston.data[500:, :]) pickle_object = pickle.dumps(est) est2 = pickle.loads(pickle_object) assert_equal(type(est2), est.__class__) X_new2 = est2.transform(boston.data[500:, :]) assert_array_almost_equal(X_new, X_new2) # Check the classifier est = SymbolicClassifier(generations=2, random_state=0) est.fit(cancer.data[:100, :], cancer.target[:100]) score = est.score(cancer.data[500:, :], cancer.target[500:]) pickle_object = pickle.dumps(est) est2 = pickle.loads(pickle_object) assert_equal(type(est2), est.__class__) score2 = est2.score(cancer.data[500:, :], cancer.target[500:]) assert_equal(score, score2)
def test_pickle(): """Check pickability""" # Check the regressor est = SymbolicRegressor(generations=2, random_state=0) est.fit(boston.data[:100, :], boston.target[:100]) score = est.score(boston.data[500:, :], boston.target[500:]) pickle_object = pickle.dumps(est) est2 = pickle.loads(pickle_object) assert_equal(type(est2), est.__class__) score2 = est2.score(boston.data[500:, :], boston.target[500:]) assert_equal(score, score2) # Check the transformer est = SymbolicTransformer(generations=2, random_state=0) est.fit(boston.data[:100, :], boston.target[:100]) X_new = est.transform(boston.data[500:, :]) pickle_object = pickle.dumps(est) est2 = pickle.loads(pickle_object) assert_equal(type(est2), est.__class__) X_new2 = est2.transform(boston.data[500:, :]) assert_array_almost_equal(X_new, X_new2)
x = scaling(x) est = Ridge() est.fit(x[:300, :], y[:300]) print(est.score(x[300:, :], y[300:])) function_set = [ 'add', 'sub', 'mul', 'div', 'sqrt', 'log', 'abs', 'neg', 'inv', 'max', 'min' ] gp = SymbolicRegressor(generations=20, population_size=2000, hall_of_fame=100, n_components=10, function_set=function_set, parsimony_coefficient=0.0005, max_samples=0.9, verbose=1, random_state=0, n_jobs=3) gp.fit(x[:300, :], y[:300]) gp_features = gp.transform(x) new_boston = np.hstack((x, gp_features)) est = Ridge() est.fit(new_boston[:300, :], y[:300]) print(est.score(new_boston[300:, :], y[300:]))