示例#1
0
def S_cons(Q, MP):

    ret = zeros(NV)

    P = State(Q, MP)

    ρ = P.ρ

    ret[2:5] = P.f_body()

    if VISCOUS:
        ψ = P.ψ()
        θ1_1 = P.θ1_1()
        ret[5:14] = -ψ.ravel() * θ1_1

    if THERMAL:
        H = P.H()
        θ2_1 = P.θ2_1()
        ret[14:17] = -ρ * H * θ2_1

    if REACTIVE:
        K = P.K()
        ret[17] = -ρ * K

    return ret
示例#2
0
def riemann_constraints(Q, sgn, MP):

    M = M_prim(Q, 0, MP)
    λ, L = eig(M, left=True, right=False)

    λ = λ.real
    L = L.T

    Lhat = L[λ.argsort()]
    Lhat[:n1] *= 0

    P = State(Q, MP)

    σρ = P.dσdρ()
    σA = P.dσdA()

    Lhat[:3, 0] = -σρ[0]
    Lhat[0, 1] = 1
    for i in range(3):
        Lhat[:3, 5 + 3 * i:8 + 3 * i] = -σA[0, :, i]

    if THERMAL:
        Lhat[3, 0] = P.dTdρ()
        Lhat[3, 1] = P.dTdp()

    Lhat[-n1:, 2:5] *= -sgn
    if THERMAL:
        Lhat[-n1:, 14] *= -sgn

    return Lhat
示例#3
0
def S_prim(SYS, Q, MP):
    """ The source terms of the primitive system
        NOTE: Uses typical ordering
    """
    ret = zeros(NV)
    P = State(Q, MP)

    ρ = P.ρ
    dEdp = P.dEdp()
    cs2 = c_s2(ρ, MP)
    dcs2dρ = dc_s2dρ(ρ, MP)

    if VISCOUS:
        ψ = P.ψ()
        θ1_1 = P.θ1_1()
        ret[1] = (1 / dEdp - ρ**2 / cs2 * dcs2dρ) * L2_2D(ψ) * θ1_1
        ret[5:14] = -ψ.ravel() * θ1_1

    if THERMAL:
        H = P.H()
        θ2_1 = P.θ2_1()
        ret[1] += 1 / dEdp * L2_1D(H) * θ2_1
        ret[14:17] = -H * θ2_1

    if REACTIVE:
        K = P.K()
        ret[17] = - K

    return ret
示例#4
0
def check_star_convergence(QL_, QR_, MPL, MPR):

    PL_ = State(QL_, MPL)

    if MPR.EOS > -1:  # not a vacuum
        PR_ = State(QR_, MPR)

        ρ0 = min(MPL.ρ0, MPR.ρ0)
        b02 = min(MPL.b02, MPR.b02)

        cond = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) / (b02 * ρ0) < STAR_TOL
        cond &= abs(PL_.v[0] - PR_.v[0]) / sqrt(b02) < STAR_TOL
    else:
        ρ0 = MPL.ρ0
        b02 = MPL.b02

        cond = amax(abs(PL_.Σ()[0])) / (b02 * ρ0) < STAR_TOL

    if THERMAL:
        if MPR.EOS > -1:
            q0 = min(q_dims(MPL), q_dims(MPR))
            T0 = min(MPL.T0, MPR.T0)

            cond &= abs(PL_.q()[0] - PR_.q()[0]) / q0 < STAR_TOL
            cond &= abs(PL_.T() - PR_.T()) / T0 < STAR_TOL
        else:
            q0 = q_dims(MPL)

            cond &= abs(PL_.q()[0]) / q0 < STAR_TOL

    return cond
示例#5
0
def Pvec(Q, MP):
    """ Vector of primitive variables
        NOTE: Uses atypical ordering
    """
    P = State(Q, MP)
    ret = Q.copy()

    ret[1] = P.p()
    ret[2:5] /= P.ρ

    if THERMAL:
        ret[14:17] /= P.ρ

    return ret
示例#6
0
def F_cons(Q, d, MP):

    ret = zeros(NV)

    P = State(Q, MP)

    ρ = P.ρ
    p = P.p()
    E = P.E
    v = P.v

    vd = v[d]
    ρvd = ρ * vd

    ret[0] = ρvd

    ret[1] = ρvd * E + p * vd
    ret[2:5] = ρvd * v
    ret[2 + d] += p

    if VISCOUS:

        A = P.A
        σ = P.σ()

        σd = σ[d]
        ret[1] -= dot(σd, v)
        ret[2:5] -= σd

        Av = dot(A, v)
        ret[5 + d] = Av[0]
        ret[8 + d] = Av[1]
        ret[11 + d] = Av[2]

    if THERMAL:

        J = P.J
        T = P.T()
        q = P.q()

        ret[1] += q[d]
        ret[14:17] = ρvd * J
        ret[14 + d] += T

    if MULTI:
        λ = P.λ
        ret[17] = ρvd * λ

    return ret
示例#7
0
def test(Q, d, CONS, MP):

    from numpy import amax, sort
    from numpy.linalg import eigvals

    from gpr.misc.structures import State

    P = State(Q, MP)
    l, L, R = eigen(P, d, CONS, MP)

    n = 17 if THERMAL else 14

    if CONS:
        from gpr.sys.conserved import M_cons
        M = M_cons(Q, d, MP)[:n, :n]
    else:
        from gpr.sys.primitive import M_prim
        M = M_prim(Q, d, MP)[:n, :n]

    print("Λ:", amax(abs(sort(eigvals(M)) - sort(l))))

    for i in range(n):
        print(i)
        print('L:', amax(abs(dot(L[i], M) - (l[i] * L[i]))[L[i] != 0]))
        print('R:', amax(
            abs(dot(M, R[:, i]) - (l[i] * R[:, i]))[R[:, i] != 0]))
示例#8
0
def M_cons(Q, d, MP):
    """ Returns the Jacobian in the dth direction
    """
    P = State(Q, MP)
    DFDP = dFdP(P, d, MP)
    DPDQ = dPdQ(P, MP)
    return dot(DFDP, DPDQ) + B_cons(Q, d, MP)
示例#9
0
def systems(Q, d, MP):
    P = State(Q, MP)
    DQDP = dQdP(P, MP)

    M1 = M_prim(Q, d, MP)
    M2 = M_cons(Q, d, MP)
    M3 = solve(DQDP, dot(M2, DQDP))
    return M1, M2, M3
示例#10
0
def M_prim(Q, d, MP):
    """ The system jacobian of the primitive system
        NOTE: Uses typical ordering
    """
    P = State(Q, MP)

    ρ = P.ρ
    p = P.p()
    A = P.A
    v = P.v

    c0 = c_0(ρ, p, A, MP)

    ret = v[d] * eye(NV)
    ret[0, 2 + d] = ρ
    ret[1, 2 + d] = ρ * c0**2
    ret[2 + d, 1] = 1 / ρ

    if VISCOUS:

        σ = P.σ()
        dσdρ = P.dσdρ()
        dσdA = P.dσdA()

        ret[1, 2:5] += σ[d] - ρ * dσdρ[d]
        ret[2:5, 0] = -1 / ρ * dσdρ[d]
        ret[2:5, 5:14] = -1 / ρ * dσdA[d].reshape([3, 9])

        ret[5 + d, 2:5] = A[0]
        ret[8 + d, 2:5] = A[1]
        ret[11 + d, 2:5] = A[2]

    if THERMAL:

        dTdρ = P.dTdρ()
        dTdp = P.dTdp()
        T = P.T()
        ch = c_h(ρ, T, MP)

        ret[1, 14 + d] = ρ * ch**2 / dTdp
        ret[14 + d, 0] = dTdρ / ρ
        ret[14 + d, 1] = dTdp / ρ

    return ret
示例#11
0
文件: impact.py 项目: pinebai/phd
def gauge_plot(uList, MPs):

    dt = 5e-6 / 100

    x = [0.0018125 + 0.006 + 0.003625 * i for i in range(5)]

    n = len(uList)
    nx, ny = uList[0].shape[:2]
    x_ = linspace(0, 5e-6, n)

    vy = zeros([5, n])
    py = zeros([5, n])
    ρy = zeros([5, n])
    Σy = zeros([5, n])

    # j0 = int(ny / 2)
    j0 = 0
    for j in range(n):
        for i in range(5):
            i0 = int(x[i] / 0.03 * nx)
            Q = uList[j][i0, j0]
            P = State(Q, MPs[1])
            vy[i, j] = P.v[0]
            py[i, j] = P.p()
            ρy[i, j] = P.ρ
            Σy[i, j] = P.Σ()[0, 0]
            x[i] += P.v[0] * dt

    figure(1)
    for i in range(5):
        plot(x_, vy[i])

    figure(2)
    for i in range(5):
        plot(x_, py[i])

    figure(3)
    for i in range(5):
        plot(x_, ρy[i])

    figure(4)
    for i in range(5):
        plot(x_, -Σy[i])
示例#12
0
def generate_vecs(MP):

    A = rand(3, 3)
    A /= sign(det3(A))
    ρ = det3(A) * MP.ρ0
    p = rand()
    v = rand(3)
    J = rand(3)

    Q = Cvec(ρ, p, v, MP, A, J)
    P = State(Q, MP)
    return Q, P
示例#13
0
文件: fv_tests.py 项目: pinebai/phd
def TAT_test(d, MP):

    Q = generate_vector(MP)
    P = State(Q, MP)

    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    TAT_py = dot(Ξ1, Ξ2)
    TAT_cp = GPRpy.system.thermo_acoustic_tensor(Q, d, MP)

    print("TAT   ", check(TAT_cp, TAT_py))
    return TAT_cp, TAT_py
示例#14
0
def check_star_convergence(QL_, QR_, MPL, MPR, STAR_TOL=1e-6):

    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    cond1 = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) < STAR_TOL
    cond2 = abs(PL_.T() - PR_.T()) < STAR_TOL

    return cond1 and cond2
示例#15
0
文件: implicit.py 项目: pinebai/phd
def obj_eul(x, WwL, WwR, dt, MPL, MPR):

    nX = NT * NV

    qL = x[0:nX].reshape([NT, NV])
    qR = x[nX:2 * nX].reshape([NT, NV])
    ρvL = x[2 * nX:2 * nX + 3 * N].reshape([N, 3])
    ρvR = x[2 * nX + 3 * N:2 * nX + 6 * N].reshape([N, 3])

    ret = zeros(2 * nX + 6 * N)

    ret[0:nX] = (dot(U, qL) - rhs(qL, WwL, dt, MPL, 0)).ravel()
    ret[nX:2 * nX] = (dot(U, qR) - rhs(qR, WwR, dt, MPR, 0)).ravel()

    qL_ = dot(ENDVALS[:, 1], qL.reshape([N, N, NV]))
    qR_ = dot(ENDVALS[:, 0], qR.reshape([N, N, NV]))

    qL_[:, 2:5] += ρvL
    qR_[:, 2:5] += ρvR

    vL_ = zeros([N, 3])
    vR_ = zeros([N, 3])
    ΣL_ = zeros([N, 3])
    ΣR_ = zeros([N, 3])
    for i in range(N):
        PL_ = State(qL_[i], MPL)
        PR_ = State(qR_[i], MPR)
        vL_[i] = PL_.v
        vR_[i] = PR_.v
        ΣL_[i] = PL_.Σ()[0]
        ΣR_[i] = PR_.Σ()[0]

    ret[2 * nX:2 * nX + 3 * N] = (vL_ - vR_).ravel()
    ret[2 * nX + 3 * N:2 * nX + 6 * N] = (ΣL_ - ΣR_).ravel()

    return ret
示例#16
0
def max_eig(Q, d, MP):
    """ Returns maximum absolute value of the eigenvalues of the GPR system
    """
    P = State(Q, MP)
    vd = P.v[d]
    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    O = dot(Ξ1, Ξ2)

    lam = sqrt(eigvals(O).max().real)

    if vd > 0:
        return vd + lam
    else:
        return lam - vd
示例#17
0
def plot_compound(u, MPs, style, x, lab, col, title, sci, attr, plotType,
                  vmin, vmax, i=None, j=None, takeNorm=False, offset=0,
                  symaxis=-1, excludeMats=[]):

    shape = u.shape[:-1]
    n = prod(shape)
    y = zeros(n)
    nmat = len(MPs)

    for ii in range(n):
        Q = u.reshape([n, -1])[ii]
        ind = get_material_index(Q, nmat)
        MP = MPs[ind]

        if MP.EOS > -1 and ind not in excludeMats:  # not a vacuum
            P = State(Q, MP)

            if isinstance(getattr(P, attr), MethodType):
                var = getattr(P, attr)()
            else:
                var = getattr(P, attr)

            if i is not None:
                if j is None:
                    var = var[i]
                else:
                    var = var[i,j]

            if takeNorm:
                var = norm(var)

            if isnan(var):
                print('Warning: nan in cell', ii)
            else:
                y[ii] = var

        else:
            y[ii] = nan

    y += offset

    if u.ndim - 1 == 1:
        plot1d(y, style, x, lab, col, title, sci=sci)
    else:
        plot2d(y.reshape(shape), plotType, vmin=vmin, vmax=vmax,
               lsets=[u[:, :, -(i+1)] for i in range(nmat-1)], symaxis=symaxis)
示例#18
0
def check_star_convergence(QL_, QR_, MPL, MPR):

    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    cond1 = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) < STAR_TOL

    if THERMAL:
        cond2 = abs(PL_.T() - PR_.T()) < STAR_TOL
    else:
        cond2 = True

    return cond1 and cond2
示例#19
0
def star_stepper(QL_, QR_, MPL, MPR, interfaceType):
    """ Iterates to the next approximation of the star states.
        NOTE: the material on the right may be a vacuum.
    """
    PL = State(QL_, MPL)
    _, RL = riemann_constraints(PL, 1, MPL)

    if THERMAL:
        xL = concatenate([PL.Σ()[0], [PL.T()]])
    else:
        xL = PL.Σ()[0]

    cL = zeros(n6)

    if MPR.EOS > -1:  # not a vacuum

        PR = State(QR_, MPR)
        _, RR = riemann_constraints(PR, -1, MPR)

        if THERMAL:
            xR = concatenate([PR.Σ()[0], [PR.T()]])
        else:
            xR = PR.Σ()[0]

        cR = zeros(n6)

        if interfaceType == 'stick':
            x_ = stick_bcs(RL, RR, PL, PR, xL, xR)

        elif interfaceType == 'slip':
            x_ = slip_bcs(RL, RR, PL, PR, xL, xR)

        cL[:n1] = x_ - xL
        cR[:n1] = x_ - xR

        PRvec = Pvec(PR)
        PR_vec = dot(RR, cR) + PRvec
        QR_ = Pvec_to_Cvec(reorder(PR_vec), MPR)

    else:
        cL[:n1] = - xL
        if THERMAL:
            YL = RL[14, :4]
            cL[3] = (dot(YL[:3], PL.Σ()[0]) - PL.J[0]) / YL[3]
        QR_ = zeros(n6)

    PLvec = Pvec(PL)
    PL_vec = dot(RL, cL) + PLvec
    QL_ = Pvec_to_Cvec(reorder(PL_vec), MPL)

    return QL_, QR_
示例#20
0
def star_stepper(QL, QR, dt, MPL, MPR, SL=None, SR=None):

    d = 0

    PL = State(QL, MPL)
    PR = State(QR, MPR)
    LL, RL = riemann_constraints(PL, 1, MPL)
    LR, RR = riemann_constraints(PR, -1, MPR)
    YL = RL[11:15, :4]
    YR = RR[11:15, :4]

    xL = concatenate([PL.Σ()[d], [PL.T()]])
    xR = concatenate([PR.Σ()[d], [PR.T()]])

    Ξ1L = Xi1(PL, d, MPL)
    Ξ2L = Xi2(PL, d, MPL)
    OL = dot(Ξ1L, Ξ2L)
    Ξ1R = Xi1(PR, d, MPR)
    Ξ2R = Xi2(PR, d, MPR)
    OR = dot(Ξ1R, Ξ2R)

    _, QL_1 = eig(OL)
    _, QR_1 = eig(OR)

    if SL is not None:
        cL = dot(LL, reorder(SL, order='atypical'))
        cR = dot(LR, reorder(SR, order='atypical'))

        XL = dot(QL_1, cL[4:8])
        XR = dot(QR_1, cR[4:8])

        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR,
                   yR - yL - dt * (XL + XR) + dot(YL, xL) - dot(YR, xR))

    else:
        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR, yR - yL + dot(YL, xL) - dot(YR, xR))

    cL[:4] = x_ - xL
    cR[:4] = x_ - xR

    PLvec = reorder(Pvec(PL, MPL.THERMAL), order='atypical')
    PRvec = reorder(Pvec(PR, MPR.THERMAL), order='atypical')
    PL_vec = dot(RL, cL) + PLvec
    PR_vec = dot(RR, cR) + PRvec
    QL_ = Pvec_to_Cvec(reorder(PL_vec), MPL)
    QR_ = Pvec_to_Cvec(reorder(PR_vec), MPR)
    return QL_, QR_
示例#21
0
def star_states_stiff(QL, QR, dt, MPL, MPR):

    PL = State(QL, MPL)
    PR = State(QR, MPR)

    x0 = zeros(42)
    x0[:21] = concatenate([QL, PL.Σ()[0], [PL.q()[0]]])
    x0[21:] = concatenate([QR, PR.Σ()[0], [PR.q()[0]]])

    def obj(x):
        return star_stepper_obj(x, QL, QR, dt, MPL, MPR)

    ret = newton_krylov(obj, x0).reshape([2, 21])

    return ret[0, :17], ret[1, :17]
示例#22
0
def B_cons(Q, d, MP):

    ret = zeros([NV, NV])

    if VISCOUS:

        P = State(Q, MP)

        v = P.v
        vd = v[d]

        for i in range(5, 14):
            ret[i, i] = vd
        ret[5 + d, 5:8] -= v
        ret[8 + d, 8:11] -= v
        ret[11 + d, 11:14] -= v

    for i in range(1, LSET + 1):
        ret[-i, -i] = vd

    return ret
示例#23
0
def star_stepper_obj(x, QL, QR, dt, MPL, MPR):

    X = x.reshape([2, 21])
    ret = zeros([2, 21])

    QL_ = X[0, :17]
    QR_ = X[1, :17]

    PL = State(QL, MPL)
    PR = State(QR, MPR)
    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    pL = Cvec_to_Pvec(QL, MPL)
    pR = Cvec_to_Pvec(QR, MPR)
    pL_ = Cvec_to_Pvec(QL_, MPL)
    pR_ = Cvec_to_Pvec(QR_, MPR)

    ML = riemann_constraints2(PL, 'L', MPL)[:17, :17]
    MR = riemann_constraints2(PR, 'R', MPR)[:17, :17]

    xL_ = X[0, 17:]
    xR_ = X[1, 17:]

    xL = zeros(4)
    xR = zeros(4)

    xL[:3] = PL.Σ()[0]
    xR[:3] = PR.Σ()[0]
    xL[3] = PL.q()[0]
    xR[3] = PR.q()[0]

    ret[0, :4] = dot(ML[:4], pL_ - pL) - (xL_ - xL)
    ret[1, :4] = dot(MR[:4], pR_ - pR) - (xR_ - xR)

    SL = source_prim(QL, MPL)[:17]
    SR = source_prim(QR, MPR)[:17]
    SL_ = source_prim(QL_, MPL)[:17]
    SR_ = source_prim(QR_, MPR)[:17]

    ret[0, 4:17] = dot(ML[4:], (pL_ - pL) - dt / 2 * (SL + SL_))
    ret[1, 4:17] = dot(MR[4:], (pR_ - pR) - dt / 2 * (SR + SR_))

    bR = zeros(4)
    bL = zeros(4)
    bL[:3] = PL_.v
    bR[:3] = PR_.v
    bL[3] = PL_.T()
    bR[3] = PR_.T()

    ret[0, 17:] = xL_ - xR_
    ret[1, 17:] = bL - bR

    return ret.ravel()
示例#24
0
def cons_to_class(QL, QR, QL_, QR_, MPs):
    PL = State(QL, MPs[0])
    PR = State(QR, MPs[1])
    PL_ = State(QL_, MPs[0])
    PR_ = State(QR_, MPs[1])
    return PL, PR, PL_, PR_
示例#25
0
文件: euler.py 项目: pinebai/phd
def exact_euler(n, t, x0, QL, QR, MPL, MPR):
    """ Returns the exact solution to the Euler equations at (x,t),
        given initial states PL for x<x0 and PR for x>x0
    """
    ret = zeros([n, len(QL)])
    PL = State(QL, MPL)
    PR = State(QR, MPR)

    ρL = PL.ρ
    ρR = PR.ρ
    uL = PL.v[0]
    uR = PR.v[0]
    pL = PL.p()
    pR = PR.p()
    c0L = c_0(ρL, pL, eye(3), MPL)
    c0R = c_0(ρR, pR, eye(3), MPR)

    p_ = p_star(PL, PR, MPL, MPR)
    u_ = u_star(p_, PL, PR, MPL, MPR)

    print('Interface:', u_ * t + x0)

    for i in range(n):
        x = (i + 0.5) / n
        S = (x - x0) / t

        if (S < u_):

            if (p_ < pL):  # Left fan
                if (S < uL - c0L):
                    ret[i] = QL
                else:
                    STL = u_ - c0_star(p_, PL, MPL)
                    if (S < STL):
                        ret[i] = Wfan(S, PL, MPL, c0L)
                    else:
                        r_ = r_star_fan(p_, PL, MPL)
                        v_ = array([u_, 0, 0])
                        ret[i] = Cvec(r_, p_, v_, MPL)

            else:  # Left shock
                SL = uL - Q(p_, PL, MPL) / ρL
                if (S < SL):
                    ret[i] = QL
                else:
                    r_ = r_star_shock(p_, PL, MPL)
                    v_ = array([u_, 0, 0])
                    ret[i] = Cvec(r_, p_, v_, MPL)

            ret[i, -1] = -1

        else:

            if (p_ < pR):  # Right fan
                if (uR + c0R < S):
                    ret[i] = QR
                else:
                    STR = u_ + c0_star(p_, PR, MPR)
                    if (STR < S):
                        ret[i] = Wfan(S, PR, MPR, -c0R)
                    else:
                        r_ = r_star_fan(p_, PR, MPR)
                        v_ = array([u_, 0, 0])
                        ret[i] = Cvec(r_, p_, v_, MPR)

            else:  # Right shock
                SR = uR + Q(p_, PR, MPR) / ρR
                if (SR < S):
                    ret[i] = QR
                else:
                    r_ = r_star_shock(p_, PR, MPR)
                    v_ = array([u_, 0, 0])
                    ret[i] = Cvec(r_, p_, v_, MPR)

            ret[i, -1] = 1

    return ret
示例#26
0
def star_stepper(QL, QR, MPL, MPR, NV=17):

    PL = State(QL, MPL)
    PR = State(QR, MPR)

    LhatL = riemann_constraints(QL, -1, MPL)
    LhatR = riemann_constraints(QR, 1, MPR)

    cL = zeros(NV)
    cR = zeros(NV)

    if STICK:

        YL = Y_matrix(PL, MPL, -1)
        YR = Y_matrix(PR, MPR, 1)

        if THERMAL:
            xL = concatenate([PL.Σ()[0], [PL.T()]])
            xR = concatenate([PR.Σ()[0], [PR.T()]])
            yL = concatenate([PL.v, PL.J[:1]])
            yR = concatenate([PR.v, PR.J[:1]])
        else:
            xL = PL.Σ()[0]
            xR = PR.Σ()[0]
            yL = PL.v
            yR = PR.v

        x_ = solve(YL - YR, yR - yL + dot(YL, xL) - dot(YR, xR))

    else:  # slip conditions - only implemented for non-thermal

        if THERMAL:
            YL = Y_matrix(PL, MPL, -1)[[0, 3]]
            YR = Y_matrix(PR, MPR, 1)[[0, 3]]

            xL = array([PL.Σ()[0], PL.T()])
            xR = array([PR.Σ()[0], PR.T()])
            yL = array([PL.v[0], PL.J[0]])
            yR = array([PR.v[0], PR.J[0]])

            M = YL[:, [0, -1]] - YR[:, [0, -1]]
            x_ = solve(M, yR - yL + dot(YL, xL) - dot(YR, xR))
            x_ = array([x_[0], 0, 0, x_[1]])

        else:
            YL = Y_matrix(PL, MPL, -1)[0]
            YR = Y_matrix(PR, MPR, 1)[0]

            xL = PL.Σ()[0]
            xR = PR.Σ()[0]
            yL = PL.v[0]
            yR = PR.v[0]

            x_ = (yR - yL + dot(YL, xL) - dot(YR, xR)) / (YL - YR)[0]
            x_ = array([x_, 0, 0])

    cL[:n1] = x_ - xL
    cR[:n1] = x_ - xR

    PLvec = Pvec(QL, MPL)
    PRvec = Pvec(QR, MPR)
    PL_vec = solve(LhatL, cL) + PLvec
    PR_vec = solve(LhatR, cR) + PRvec
    QL_ = Pvec_to_Cvec(PL_vec, MPL)
    QR_ = Pvec_to_Cvec(PR_vec, MPR)

    return QL_, QR_