示例#1
0
def star_stepper(QL, QR, dt, MPL, MPR, SL=None, SR=None):

    d = 0

    PL = State(QL, MPL)
    PR = State(QR, MPR)
    LL, RL = riemann_constraints(PL, 1, MPL)
    LR, RR = riemann_constraints(PR, -1, MPR)
    YL = RL[11:15, :4]
    YR = RR[11:15, :4]

    xL = concatenate([PL.Σ()[d], [PL.T()]])
    xR = concatenate([PR.Σ()[d], [PR.T()]])

    Ξ1L = Xi1(PL, d, MPL)
    Ξ2L = Xi2(PL, d, MPL)
    OL = dot(Ξ1L, Ξ2L)
    Ξ1R = Xi1(PR, d, MPR)
    Ξ2R = Xi2(PR, d, MPR)
    OR = dot(Ξ1R, Ξ2R)

    _, QL_1 = eig(OL)
    _, QR_1 = eig(OR)

    if SL is not None:
        cL = dot(LL, reorder(SL, order='atypical'))
        cR = dot(LR, reorder(SR, order='atypical'))

        XL = dot(QL_1, cL[4:8])
        XR = dot(QR_1, cR[4:8])

        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR,
                   yR - yL - dt * (XL + XR) + dot(YL, xL) - dot(YR, xR))

    else:
        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR, yR - yL + dot(YL, xL) - dot(YR, xR))

    cL[:4] = x_ - xL
    cR[:4] = x_ - xR

    PLvec = reorder(Pvec(PL, MPL.THERMAL), order='atypical')
    PRvec = reorder(Pvec(PR, MPR.THERMAL), order='atypical')
    PL_vec = dot(RL, cL) + PLvec
    PR_vec = dot(RR, cR) + PRvec
    QL_ = Pvec_to_Cvec(reorder(PL_vec), MPL)
    QR_ = Pvec_to_Cvec(reorder(PR_vec), MPR)
    return QL_, QR_
示例#2
0
def riemann_constraints(P, sgn, MP):
    """ K=R: sgn = -1
        K=L: sgn = 1
        NOTE: Uses atypical ordering

        Extra constraints are:
        dΣ = dΣ/dρ * dρ + dΣ/dp * dp + dΣ/dA * dA
        dT = dT/dρ * dρ + dT/dp * dp
        v*L = v*R
        J*L = J*R
    """
    _, Lhat, Rhat = eigen(P, 0, MP, False)
    Lhat = reorder(Lhat.T, order='atypical').T
    Rhat = reorder(Rhat, order='atypical')

    σA = P.dσdA()
    σρ = P.dσdρ()
    Tρ = P.dTdρ()
    Tp = P.dTdp()

    Lhat[:3, 0] = -σρ[0]
    Lhat[:3, 1] = array([1, 0, 0])
    for i in range(3):
        Lhat[:3, 2 + 3 * i:5 + 3 * i] = -σA[0, :, :, i]
    Lhat[:3, 11:] = 0

    if MP.THERMAL:
        Lhat[3, 0] = Tρ
        Lhat[3, 1] = Tp
        Lhat[3, 2:] = 0

    Lhat[4:8, 11:15] *= -sgn

    Ξ1 = Xi1(P, 0, MP)
    Ξ2 = Xi2(P, 0, MP)
    O = dot(Ξ1, Ξ2)
    w, vl, vr = eig(O, left=1)

    D_1 = diag(1 / sqrt(w.real))
    Q = vl.T
    Q_1 = vr
    I = dot(Q, Q_1)
    Q = solve(I, Q)

    tmp = zeros([5, 5])
    tmp[:4] = Lhat[:4, :5]
    tmp[4] = Lhat[8, :5]
    b = zeros([5, 4])
    b[:4, :4] = eye(4)
    X = solve(tmp, b)
    Rhat[:5, :4] = X

    Y0 = dot(Q_1, dot(D_1, Q))
    Y = -sgn * dot(Y0, dot(Ξ1, X))
    Rhat[11:15, :4] = Y
    Rhat[:, 4:8] = 0
    Rhat[11:15, 4:8] = sgn * Q_1

    return Lhat, Rhat
示例#3
0
def Y_matrix(P, MP, sgn):

    ρ = P.ρ
    A = P.A
    σρ = P.dσdρ()
    σA = P.dσdA()

    e0 = array([1, 0, 0])
    Π1 = σA[0, :, :, 0]

    tmp = zeros([5, 5])
    tmp[:3, 0] = -σρ[0]
    tmp[0, 1] = 1
    tmp[:3, 2:5] = -Π1

    if THERMAL:

        tmp[3, 0] = P.dTdρ()
        tmp[3, 1] = P.dTdp()
        tmp[4, 0] = -1 / ρ
        tmp[4, 2:5] = inv(A)[0]

    else:

        p = P.p()
        σ = P.σ()
        c0 = c_0(ρ, p, A, MP)

        B = zeros([2, 3])
        B[0, 0] = ρ
        B[1] = σ[0] - ρ * σρ[0]
        B[1, 0] += ρ * c0**2

        rhs = column_stack((-σρ[0], e0))
        C = solve(Π1, rhs)

        BA_1 = dot(B, inv(A))
        Z = eye(2) - dot(BA_1, C)
        W = concatenate([eye(2), -BA_1], axis=1)
        tmp[3:5] = solve(Z, W)

    b = zeros([5, n1])
    b[:n1, :n1] = eye(n1)
    X = solve(tmp, b)

    Ξ1 = Xi1(P, 0, MP)
    Ξ2 = Xi2(P, 0, MP)

    Ξ = dot(Ξ1, Ξ2)
    w, vr = eig(Ξ)

    D_1 = diag(1 / sqrt(w.real))
    Q_1 = vr
    Q = inv(Q_1)

    Y0 = dot(Q_1, dot(D_1, Q))

    return sgn * dot(Y0, dot(Ξ1, X))
示例#4
0
文件: fv_tests.py 项目: pinebai/phd
def TAT_test(d, MP):

    Q = generate_vector(MP)
    P = State(Q, MP)

    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    TAT_py = dot(Ξ1, Ξ2)
    TAT_cp = GPRpy.system.thermo_acoustic_tensor(Q, d, MP)

    print("TAT   ", check(TAT_cp, TAT_py))
    return TAT_cp, TAT_py
示例#5
0
def eigenvalues(P, d, MP):

    v = P.v
    vd = v[d]
    n1, n2, n3, n4, n5, n6 = get_indexes()

    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    Ξ = dot(Ξ1, Ξ2)

    w, vl, vr = eig(Ξ, left=1)
    sw = sqrt(w.real)
    D = diag(sw)

    l = array([vd + λ for λ in diag(D)] +
              [vd - λ for λ in diag(D)] + [vd] * n3)

    return l
示例#6
0
def riemann_constraints(P, sgn, MP, left=False):
    """ K=R: sgn = -1
        K=L: sgn = 1
        NOTE: Uses atypical ordering

        Extra constraints are:
        dΣ = dΣ/dρ * dρ + dΣ/dp * dp + dΣ/dA * dA
        dT = dT/dρ * dρ + dT/dp * dp
        v*L = v*R
        J*L = J*R
    """
    _, Lhat, Rhat = eigen(P, 0, False, MP, values=False, right=True, left=left,
                          typical_order=False)

    if left:
        Lhat = left_riemann_constraints(P, Lhat, sgn)

    ρ = P.ρ
    A = P.A
    σρ = P.dσdρ()
    σA = P.dσdA()

    e0 = array([1, 0, 0])
    Π1 = σA[0, :, :, 0]

    tmp = zeros([5, 5])
    tmp[:3, 0] = -σρ[0]
    tmp[0, 1] = 1
    tmp[:3, 2:5] = -Π1

    if THERMAL:

        tmp[3, 0] = P.dTdρ()
        tmp[3, 1] = P.dTdp()
        tmp[4, 0] = -1 / ρ
        tmp[4, 2:5] = inv(A)[0]

    else:

        p = P.p()
        σ = P.σ()
        c0 = c_0(ρ, p, A, MP)

        B = zeros([2, 3])
        B[0, 0] = ρ
        B[1] = σ[0] - ρ * σρ[0]
        B[1, 0] += ρ * c0**2

        rhs = column_stack((-σρ[0], e0))
        C = solve(Π1, rhs)

        BA_1 = dot(B, inv(A))
        Z = eye(2) - dot(BA_1, C)
        W = concatenate([eye(2), -BA_1], axis=1)
        tmp[3:5] = solve(Z, W)

    b = zeros([5, n1])
    b[:n1, :n1] = eye(n1)
    X = solve(tmp, b)

    Rhat[:5, :n1] = X

    Ξ1 = Xi1(P, 0, MP)
    Ξ2 = Xi2(P, 0, MP)
    Q, Q_1, _, D_1 = decompose_Ξ(Ξ1, Ξ2)
    Y0 = dot(Q_1, dot(D_1, Q))

    Rhat[11:n5, :n1] = -sgn * dot(Y0, dot(Ξ1, X))
    Rhat[:11, n1:n2] = 0
    Rhat[11:n5, n1:n2] = sgn * dot(Q_1, D_1)

    return Lhat, Rhat
示例#7
0
def right_eigenvectors(P, d, MP, typical_order):

    σA = P.dσdA()
    σρ = P.dσdρ()

    Π1 = σA[d, :, :, 0]
    Π2 = σA[d, :, :, 1]
    Π3 = σA[d, :, :, 2]

    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    Q, Q_1, D, D_1 = decompose_Ξ(Ξ1, Ξ2)

    n1, n2, n3, n4, n5, n6 = get_indexes()

    e0 = array([1, 0, 0])

    R = zeros([17, 17])

    tmp1 = 0.5 * dot(Ξ2, dot(Q_1, D_1**2))
    tmp2 = 0.5 * dot(Q_1, D_1)

    R[:5, :n1] = tmp1
    R[:5, n1:n2] = tmp1
    R[11:n5, :n1] = tmp2
    R[11:n5, n1:n2] = -tmp2

    if THERMAL:

        ρ = P.ρ
        A = P.A
        Tρ = P.dTdρ()
        Tp = P.dTdp()

        b = Tp * σρ[d] + Tρ * e0
        c = 1 / (solve(dot(Π1, A), b)[d] + Tp / ρ)

        R[0, 8] = -c * Tp
        R[1, 8] = c * Tρ
        R[2:5, 8] = c * solve(Π1, b)
        R[15, 15] = 1
        R[16, 16] = 1

    else:
        R[0, 6] = 1
        R[1, 7] = 1
        R[2:5, 6] = -solve(Π1, σρ[0])
        R[2:5, 7] = solve(Π1, e0)

    R[2:5, n3:n4] = -solve(Π1, Π2)
    R[2:5, n4:n5] = -solve(Π1, Π3)
    for i in range(6):
        R[5 + i, n3 + i] = 1

    if typical_order:
        R = reorder(R)

    if not THERMAL:
        R = R[:14, :14]

    return R
示例#8
0
def left_eigenvectors(P, d, MP, typical_order):

    ρ = P.ρ
    A = P.A

    σA = P.dσdA()
    σρ = P.dσdρ()

    Π1 = σA[d, :, :, 0]
    Π2 = σA[d, :, :, 1]
    Π3 = σA[d, :, :, 2]

    Ξ1 = Xi1(P, d, MP)
    Ξ2 = Xi2(P, d, MP)
    Q, Q_1, D, D_1 = decompose_Ξ(Ξ1, Ξ2)

    n1, n2, n3, n4, n5, n6 = get_indexes()

    e0 = array([1, 0, 0])

    L = zeros([17, 17])

    tmp1 = dot(Q, Ξ1)
    tmp2 = -dot(Q[:, :3], Π2) / ρ
    tmp3 = -dot(Q[:, :3], Π3) / ρ
    tmp4 = dot(D, Q)

    L[:n1, :5] = tmp1
    L[n1:n2, :5] = tmp1
    L[:n1, 5:8] = tmp2
    L[n1:n2, 5:8] = tmp2
    L[:n1, 8:11] = tmp3
    L[n1:n2, 8:11] = tmp3
    L[:n1, 11:n5] = tmp4
    L[n1:n2, 11:n5] = -tmp4

    if THERMAL:
        tmp = inv(A)[0]
        L[8, 0] = -1 / ρ
        L[8, 2:5] = tmp
        L[8, 5:8] = dot(tmp, solve(Π1, Π2))
        L[8, 8:11] = dot(tmp, solve(Π1, Π3))
        L[15, 15] = 1
        L[16, 16] = 1

    else:
        σ = P.σ()
        p = P.p()
        c0 = c_0(ρ, p, A, MP)

        B = zeros([2, 3])
        B[0, 0] = ρ
        B[1] = σ[0] - ρ * σρ[0]
        B[1, 0] += ρ * c0**2

        C = zeros([3, 2])
        C[:, 0] = -solve(Π1, σρ[0])
        C[:, 1] = solve(Π1, e0)

        BA_1 = dot(B, inv(A))
        Z = eye(2) - dot(BA_1, C)
        X = zeros([2, 14])
        X[:, :2] = eye(2)
        X[:, 2:5] = -BA_1
        X[:, 5:8] = -dot(BA_1, solve(Π1, Π2))
        X[:, 8:11] = -dot(BA_1, solve(Π1, Π3))
        L[6:8, :14] = solve(Z, X)

    for i in range(6):
        L[n3 + i, 5 + i] = 1

    if typical_order:
        L = reorder(L.T).T

    if not THERMAL:
        L = L[:14, :14]

    return L