} algorithm['dynamics'] = { 'type': DynamicsLRPrior, 'regularization': 1e-6, 'prior': { 'type': DynamicsPriorGMM, 'max_clusters': 20, 'min_samples_per_cluster': 40, 'max_samples': 20, }, } algorithm['traj_opt'] = { 'type': TrajOptLQRPython, } algorithm['policy_opt'] = {} config = { 'iterations': algorithm['iterations'], 'num_samples': 5, 'verbose_trials': 0, 'common': common, 'agent': agent, 'gui_on': True, 'algorithm': algorithm, } common['info'] = generate_experiment_info(config)
algorithm['traj_opt'] = { 'type': TrajOptLQRPython, } algorithm['policy_opt'] = { 'type': PolicyOptTf, 'weights_file_prefix': EXP_DIR + 'policy', 'iterations': 3000, } algorithm['policy_prior'] = { 'type': PolicyPriorGMM, 'max_clusters': 20, 'min_samples_per_cluster': 40, 'max_samples': 40, } config = { 'iterations': algorithm['iterations'], 'common': common, 'verbose_trials': 0, 'verbose_policy_trials': 1, 'agent': agent, 'gui_on': True, 'algorithm': algorithm, 'num_samples': 5, } common['info'] = generate_experiment_info(config)