def run_gpt(settings=None, initial_particles=None, gpt_input_file=None, use_tempdir=True, workdir=None, gpt_bin='$GPT_BIN', timeout=2500, auto_phase=False, verbose=False, gpt_verbose=False, asci2gdf_bin='$ASCI2GDF_BIN', kill_msgs=DEFAULT_KILL_MSGS): """ Run GPT. settings: dict with keys that can appear in a GPT input file. """ if verbose: print('run_gpt') if (initial_particles is None and auto_phase): raise ValueError( 'User must specify the initial particles (either particle group or distgen file) when auto phasing.' ) if (isinstance(initial_particles, str)): raise ValueError( 'Intial particles must be particle group or None when using run_gpt method.' ) # Make GPT object G = GPT( gpt_bin=gpt_bin, input_file=gpt_input_file, workdir=workdir, verbose=verbose, use_tempdir=use_tempdir, kill_msgs=kill_msgs, initial_particles=initial_particles, ) G.timeout = timeout G.verbose = verbose # Set inputs if settings: G.set_variables(settings) if (auto_phase): if (verbose): print('\nAuto Phasing >------\n') t1 = time() # Create the distribution used for phasing if (verbose): print('****> Creating intiial distribution for phasing...') if (initial_particles): phasing_beam = single_particle(x=initial_particles['mean_x'], y=initial_particles['mean_y'], z=initial_particles['mean_z'], px=initial_particles['mean_px'], py=initial_particles['mean_py'], pz=initial_particles['mean_pz'], t=initial_particles['mean_t']) #phasing_beam = get_distgen_beam_for_phasing(beam, n_particle=10, verbose=verbose) phasing_particle_file = os.path.join(G.path, 'gpt_particles.phasing.gdf') phasing_beam.write_gpt(phasing_particle_file, asci2gdf_bin=asci2gdf_bin, verbose=verbose) #write_gpt(phasing_beam, phasing_particle_file, verbose=verbose, asci2gdf_bin=asci2gdf_bin) if (verbose): print('<**** Created intiial distribution for phasing.\n') G.write_input_file() # Write the unphased input file phased_file_name, phased_settings = gpt_phasing( G.input_file, path_to_gpt_bin=G.gpt_bin[:-3], path_to_phasing_dist=phasing_particle_file, verbose=verbose) G.set_variables(phased_settings) t2 = time() if (verbose): print(f'Time Ellapsed: {t2-t1} sec.') print('------< Auto Phasing\n') # Run G.run(gpt_verbose=gpt_verbose) return G
def multirun_gpt_with_particlegroup(settings=None, gpt_input_file=None, input_particle_group=None, workdir=None, use_tempdir=True, gpt_bin='$GPT_BIN', timeout=2500, auto_phase=False, verbose=False, gpt_verbose=False, asci2gdf_bin='$ASCI2GDF_BIN'): """ Run gpt with particles from ParticleGroup. settings: dict with keys that are in gpt input file. """ unit_registry = UnitRegistry() # Call simpler evaluation if there is no input_particle_group: if (input_particle_group is None): raise ValueError('Must supply input_particle_group') if (verbose): print('Run GPT with ParticleGroup:') if ('clipping_charge' in settings): raise ValueError( 'clipping_charge is deprecated, please specify value and units instead.' ) if ('final_charge' in settings): raise ValueError( 'final_charge is deprecated, please specify value and units instead.' ) if ('t_restart' not in settings): raise ValueError('t_restart must be supplied') t_restart = settings['t_restart'] if ('restart_file' not in settings): # Make gpt and generator objects G = GPT(gpt_bin=gpt_bin, input_file=gpt_input_file, initial_particles=input_particle_group, workdir=workdir, use_tempdir=use_tempdir) G.timeout = timeout G.verbose = verbose # Set inputs if settings: for k, v in settings.items(): G.set_variable(k, v) else: raise ValueError('Must supply settings') G.set_variable('multi_run', 0) if (auto_phase): if (verbose): print('\nAuto Phasing >------\n') t1 = time.time() # Create the distribution used for phasing if (verbose): print('****> Creating initial distribution for phasing...') phasing_beam = get_distgen_beam_for_phasing_from_particlegroup( input_particle_group, n_particle=10, verbose=verbose) phasing_particle_file = os.path.join(G.path, 'gpt_particles.phasing.gdf') write_gpt(phasing_beam, phasing_particle_file, verbose=verbose, asci2gdf_bin=asci2gdf_bin) if (verbose): print('<**** Created initial distribution for phasing.\n') G.write_input_file() # Write the unphased input file phased_file_name, phased_settings = gpt_phasing( G.input_file, path_to_gpt_bin=G.gpt_bin[:-3], path_to_phasing_dist=phasing_particle_file, verbose=verbose) G.set_variables(phased_settings) t2 = time.time() if (verbose): print(f'Time Ellapsed: {t2-t1} sec.') print('------< Auto Phasing\n') G.set_variable('multi_run', 1) G.set_variable('last_run', 2) G.set_variable('t_start', 0.0) G.set_variable('t_restart', t_restart) # If here, either phasing successful, or no phasing requested G.run(gpt_verbose=gpt_verbose) else: G = GPT() G.load_archive(settings['restart_file']) if settings: for k, v in settings.items(): G.set_variable(k, v) # Remove touts and screens that are after t_restart t_restart_with_fudge = t_restart + 1.0e-18 # slightly larger that t_restart to avoid floating point comparison problem G.output['n_tout'] = np.count_nonzero( G.stat('mean_t', 'tout') <= t_restart_with_fudge) G.output['n_screen'] = np.count_nonzero( G.stat('mean_t', 'screen') <= t_restart_with_fudge) for p in reversed(G.particles): if (p['mean_t'] > t_restart_with_fudge): G.particles.remove(p) G_all = G # rename it, and then overwrite G if (verbose): print(f'Looking for tout at t = {t_restart}') restart_particles = get_screen_data(G, tout_t=t_restart, use_extension=False, verbose=verbose)[0] if ('clipping_charge:value' in settings and 'clipping_charge:units' in settings): clipping_charge = settings[ 'clipping_charge:value'] * unit_registry.parse_expression( settings['clipping_charge:units']) clipping_charge = clipping_charge.to('coulomb').magnitude clip_to_charge(restart_particles, clipping_charge, make_copy=False) G = GPT(gpt_bin=gpt_bin, input_file=gpt_input_file, initial_particles=restart_particles, workdir=workdir, use_tempdir=use_tempdir) G.timeout = timeout G.verbose = verbose for k, v in G_all.input["variables"].items(): G.set_variable(k, v) G.set_variable('multi_run', 2) G.set_variable('last_run', 2) G.set_variable('t_start', t_restart) G.run(gpt_verbose=gpt_verbose) G_all.output['particles'][G_all.output['n_tout']:G_all. output['n_tout']] = G.tout G_all.output['particles'] = G_all.output['particles'] + G.screen G_all.output['n_tout'] = G_all.output['n_tout'] + G.output['n_tout'] G_all.output['n_screen'] = G_all.output['n_screen'] + G.output['n_screen'] if ('final_charge:value' in settings and 'final_charge:units' in settings and len(G_all.screen) > 0): final_charge = settings[ 'final_charge:value'] * unit_registry.parse_expression( settings['final_charge:units']) final_charge = final_charge.to('coulomb').magnitude clip_to_charge(G_all.screen[-1], final_charge, make_copy=False) if (input_particle_group['sigma_t'] == 0.0): # Initial distribution is a tout if (G_all.output['n_tout'] > 0): # Don't include the cathode if there are no other screens. Screws up optimizations of "final" screen when there is an error G_all.output['particles'].insert(0, input_particle_group) G_all.output['n_tout'] = G_all.output['n_tout'] + 1 else: # Initial distribution is a screen if (G_all.output['n_screen'] > 0): # Don't include the cathode if there are no other screens. Screws up optimizations of "final" screen when there is an error G_all.output['particles'].insert(G_all.output['n_tout'], input_particle_group) G_all.output['n_screen'] = G_all.output['n_screen'] + 1 return G_all
def run_gpt_with_particlegroup(settings=None, gpt_input_file=None, input_particle_group=None, workdir=None, use_tempdir=True, gpt_bin='$GPT_BIN', timeout=2500, auto_phase=False, verbose=False, gpt_verbose=False, asci2gdf_bin='$ASCI2GDF_BIN'): """ Run gpt with particles from ParticleGroup. settings: dict with keys that are in gpt input file. """ # Call simpler evaluation if there is no input_particle_group: if (input_particle_group is None): return run_gpt(settings=settings, gpt_input_file=gpt_input_file, workdir=workdir, use_tempdir=use_tempdir, gpt_bin=gpt_bin, timeout=timeout, verbose=verbose) if (verbose): print('Run GPT with ParticleGroup:') unit_registry = UnitRegistry() # Make gpt and generator objects G = GPT(gpt_bin=gpt_bin, input_file=gpt_input_file, initial_particles=input_particle_group, workdir=workdir, use_tempdir=use_tempdir) G.timeout = timeout G.verbose = verbose # Set inputs if settings: for k, v in settings.items(): G.set_variable(k, v) if ('final_charge' in settings): raise ValueError( 'final_charge is deprecated, please specify value and units instead.' ) # Run if (auto_phase): if (verbose): print('\nAuto Phasing >------\n') t1 = time.time() # Create the distribution used for phasing if (verbose): print('****> Creating initial distribution for phasing...') phasing_beam = get_distgen_beam_for_phasing_from_particlegroup( input_particle_group, n_particle=10, verbose=verbose) phasing_particle_file = os.path.join(G.path, 'gpt_particles.phasing.gdf') write_gpt(phasing_beam, phasing_particle_file, verbose=verbose, asci2gdf_bin=asci2gdf_bin) if (verbose): print('<**** Created initial distribution for phasing.\n') G.write_input_file() # Write the unphased input file phased_file_name, phased_settings = gpt_phasing( G.input_file, path_to_gpt_bin=G.gpt_bin[:-3], path_to_phasing_dist=phasing_particle_file, verbose=verbose) G.set_variables(phased_settings) t2 = time.time() if (verbose): print(f'Time Ellapsed: {t2-t1} sec.') print('------< Auto Phasing\n') # If here, either phasing successful, or no phasing requested G.run(gpt_verbose=gpt_verbose) if ('final_charge:value' in settings and 'final_charge:units' in settings and len(G.screen) > 0): final_charge = settings[ 'final_charge:value'] * unit_registry.parse_expression( settings['final_charge:units']) final_charge = final_charge.to('coulomb').magnitude clip_to_charge(G.screen[-1], final_charge, make_copy=False) if ('final_radius:value' in settings and 'final_radius:units' in settings and len(G.screen) > 0): final_radius = settings[ 'final_radius:value'] * unit_registry.parse_expression( settings['final_radius:units']) final_radius = final_radius.to('meter').magnitude take_range(G.screen[-1], 'r', 0, final_radius) if (input_particle_group['sigma_t'] == 0.0): # Initial distribution is a tout if (G.output['n_tout'] > 0): G.output['particles'].insert(0, input_particle_group) G.output['n_tout'] = G.output['n_tout'] + 1 else: # Initial distribution is a screen if (G.output['n_screen'] > 0): G.output['particles'].insert(G.output['n_tout'], input_particle_group) G.output['n_screen'] = G.output['n_screen'] + 1 return G
def run_gpt_with_distgen(settings=None, gpt_input_file=None, distgen_input_file=None, workdir=None, use_tempdir=True, gpt_bin='$GPT_BIN', timeout=2500, auto_phase=False, verbose=False, gpt_verbose=False, asci2gdf_bin='$ASCI2GDF_BIN'): """ Run gpt with particles generated by distgen. settings: dict with keys that can appear in an gpt or distgen Generator input file. Example usage: G = run_gpt_with_distgen({'lspch':False}, gpt_input_file='$LCLS_LATTICE/gpt/models/gunb_eic/gpt.in', distgen_input_file='$LCLS_LATTICE/distgen/models/gunb_gaussian/gunb_gaussian.json', verbose=True, timeout=None ) """ # Call simpler evaluation if there is no generator: if not distgen_input_file: return run_gpt(settings=settings, gpt_input_file=gpt_input_file, workdir=workdir, use_tempdir=use_tempdir, gpt_bin=gpt_bin, timeout=timeout, verbose=verbose) if (verbose): print('Run GPT with Distgen:') # Make gpt and generator objects G = GPT(gpt_bin=gpt_bin, input_file=gpt_input_file, workdir=workdir, use_tempdir=use_tempdir) G.timeout = timeout G.verbose = verbose # Distgen generator gen = Generator(verbose=verbose) f = full_path(distgen_input_file) distgen_params = yaml.safe_load(open(f)) # Set inputs if settings: G, distgen_params = set_gpt_and_distgen(G, distgen_params, settings, verbose=verbose) # Link particle files particle_file = os.path.join(G.path, G.get_dist_file()) if (verbose): print('Linking particle files, distgen output will point to -> "' + os.path.basename(particle_file) + '" in working directory.') G.set_dist_file(particle_file) if ('output' in distgen_params and verbose): print('Replacing Distgen output params') distgen_params['output'] = {'type': 'gpt', 'file': particle_file} if (verbose): print('\nDistgen >------\n') # Configure distgen gen.parse_input(distgen_params) # Run beam = gen.beam() write_gpt(beam, particle_file, verbose=verbose, asci2gdf_bin=asci2gdf_bin) if (verbose): print('------< Distgen\n') if (auto_phase): if (verbose): print('\nAuto Phasing >------\n') t1 = time.time() # Create the distribution used for phasing if (verbose): print('****> Creating intiial distribution for phasing...') phasing_beam = get_distgen_beam_for_phasing(beam, n_particle=10, verbose=verbose) phasing_particle_file = os.path.join(G.path, 'gpt_particles.phasing.gdf') write_gpt(phasing_beam, phasing_particle_file, verbose=verbose, asci2gdf_bin=asci2gdf_bin) if (verbose): print('<**** Created intiial distribution for phasing.\n') G.write_input_file() # Write the unphased input file phased_file_name, phased_settings = gpt_phasing( G.input_file, path_to_gpt_bin=G.gpt_bin[:-3], path_to_phasing_dist=phasing_particle_file, verbose=verbose) G.set_variables(phased_settings) t2 = time.time() if (verbose): print(f'Time Ellapsed: {t2-t1} sec.') print('------< Auto Phasing\n') G.run(gpt_verbose=gpt_verbose) return G