model_name='355M',
              steps=1000,
              restore_from='fresh',
              run_name='run1',
              print_every=10,
              sample_every=200,
              save_every=500
              )

"""After the model is trained, you can copy the checkpoint folder to Drive.

do everything with Drive, its messy otherwise

"""

gpt2.copy_checkpoint_to_gdrive(run_name='run1')


"""## Generate Text From The Trained Model

After you've trained the model, `generate` generates a single text from the loaded model.
"""

gpt2.generate(sess, run_name='run1')
"""
You can generate multiple texts at a time by specifing `nsamples`.
 Unique to GPT-2, you can pass a `batch_size` to generate multiple samples in parallel, giving a massive speedup (in Colaboratory, set a maximum of 20 for `batch_size`).

*  **`length`**: Number of tokens to generate (default 1023, the maximum)
* **`temperature`**: The higher the temperature, the crazier the text (default 0.7, recommended to keep between 0.7 and 1.0)
* **`top_k`**: Limits the generated guesses to the top *k* guesses (default 0 which disables the behavior; if the generated output is super crazy, you may want to set `top_k=40`)
示例#2
0
!pip install gpt_2_simple -t . --no-deps --upgrade
!pip install toposort
import gpt_2_simple as gpt2
from google.colab import drive

!cp /content/drive/MyDrive/Echidna/gpt_2_simple/gpt_2.py /content/gpt_2_simple/gpt_2.py

model_name = "355M"
gpt2.download_gpt2(model_name=model_name)

gpt2.mount_gdrive()
root_dir = '/content/drive/MyDrive/Echidna'

sess = gpt2.start_tf_sess()
gpt2.finetune(sess,
              root_dir + '/data/data.json',
              steps=4000,
              model_name=model_name,
              print_every=10,
              sample_every=200,
              save_every=500,
              run_name='echidna',
              restore_from='fresh'
              ) 
gpt2.copy_checkpoint_to_gdrive(run_name='echidna')





示例#3
0
file_name = "EEG-concentrating.csv"  # add your file here

sess = gpt2.start_tf_sess()

gpt2.finetune(
    sess,
    dataset=file_name,
    steps=1000,  #update steps as necessary 
    restore_from='latest',  # to continue from previous
    run_name='eeg-concentrating-1',
    print_every=1,
    sample_every=100,
    save_every=500,
    overwrite=True)
"""
#If using Colab:
gpt2.copy_checkpoint_to_gdrive(run_name='classical-piano-1')
"""

# Generation loop:

gpt2.copy_checkpoint_from_gdrive(run_name='eeg-concentrating-1')
sess = gpt2.start_tf_sess()
gpt2.load_gpt2(sess, run_name='eeg-concentrating-1')

#Examples of generation:
print("Generating without previous data as input")
for x in range(1, 10):
    gpt2.generate(sess, run_name='eeg-concentrating-1', length=100)
sess = gpt2.start_tf_sess()
file_name = "rightcontent.txt"

gpt2.finetune(sess,
              dataset=file_name,
              model_name='124M',
              steps=8000,
              restore_from='fresh',
              run_name='run_right_7000',
              print_every=10,
              sample_every=200,
              save_every=500,
              )

gpt2.copy_checkpoint_to_gdrive(run_name='run_right_7000')

"""You're done! Feel free to go to the **Generate Text From The Trained Model** section to generate text based on your retrained model.

## Load a Trained Model Checkpoint

Running the next cell will copy the `.rar` checkpoint file from your Google Drive into the Colaboratory VM.
"""

gpt2.copy_checkpoint_from_gdrive(run_name='run_right_7000')

sess = gpt2.start_tf_sess()
gpt2.load_gpt2(sess, run_name='run_right_7000')

"""## Generate Text From The Trained Model
示例#5
0
文件: demo.py 项目: kknet/scrolls
# Or any other text file to be trained

sess = gpt2.start_tf_sess()
gpt2.finetune(sess,
              dataset=fantasy,
              model_name='124M',
              steps=100,
              restore_from='fresh',
              run_name='fantasy3',
              print_every=2,
              sample_every=5,
              save_every=10
              )
#Stop to see if it's trained enough

gpt2.copy_checkpoint_to_gdrive(run_name='fantasy3')
input_text="I was riding a cycle when"
#this is where we enter the text to get suggestions
#Other hyperparameters
length=20
top_p=0.5
temperature=0.9
top_k=0.8
#To be used while running

gpt2.generate(sess,
              prefix=input_text,
              length=length,
              temperature=temperature,
              top_p=top_p,
              top_k=top_k,