示例#1
0
文件: DOVO.py 项目: inbliz/gpuimlearn
    def get_classifier(self, traindata, kf):

        x_tr, x_te, y_tr, y_te = fac.to_kfold(traindata, kf)
        acc_max, bestK, acc = 0, 0, [[] for a in range(kf)]

        for i in range(kf):

            # print('DOAO round', i, 'begin')
            # svm 00
            print('test00')
            clf_svm = SVC()
            clf_svm.fit(x_tr[i], y_tr[i].ravel())
            label_svm = clf_svm.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_svm)[0])

            # KNN 01
            print('test01')
            acc_k = []
            aux_k = [3, 5, 7]
            # for k in range(3, 12, 2):
            for k in aux_k:
                clf_knn = KNN_GPU(k=k)
                clf_knn.fit(x_tr[i], y_tr[i])
                label_knn = clf_knn.predict(x_te[i])
                acc_k.append(fac.get_acc(y_te[i], label_knn)[0])
            acc[i].append(max(acc_k))
            bestK = aux_k[acc_k.index(max(acc_k))]

            # LR 02
            print('test02')
            clf_lr = LogisticRegression()
            clf_lr.fit(x_tr[i], y_tr[i])
            label_LR = clf_lr.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_LR)[0])

            # XgBoost 03
            print('test03')
            clf_xgb = DecisionTreeClassifier()
            clf_xgb.fit(x_tr[i], y_tr[i])
            label_xgb = clf_xgb.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_xgb)[0])

            # RF 04
            print('test04')

            clf_rf = TGBMClassifier()
            clf_rf.fit(x_tr[i], y_tr[i])
            label_rf = clf_rf.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_rf)[0])

            print('DOAO round', i, 'end')

        acc = np.array(acc)
        acc_mean = acc.mean(axis=0)

        # fun_best = np.where(acc_mean == max(acc_mean))
        fun_best = np.argmax(acc_mean)

        return fun_best, bestK
示例#2
0
    def get_classifier(self, train, kf):

        x_tr, x_te, y_tr, y_te = fac.to_kfold(train, kf)
        acc_max, bestK, acc = 0, 0, [[] for a in range(kf)]

        for i in range(kf):

            # print('DECOC round', i, 'begin')
            # svm 00
            clf_svm = SVC()
            clf_svm.fit(x_tr[i], y_tr[i].ravel())
            label_svm = clf_svm.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_svm)[0])

            # KNN 01
            acc_k = []
            aux_k = [3, 5, 7]
            # for k in range(3, 12, 2):
            for k in aux_k:
                clf_knn = KNN_GPU(k=k)
                clf_knn.fit(x_tr[i], y_tr[i])
                label_knn = clf_knn.predict(x_te[i])
                acc_k.append(fac.get_acc(y_te[i], label_knn)[0])
            acc[i].append(max(acc_k))
            bestK = aux_k[acc_k.index(max(acc_k))]

            # # LR 02
            # clf_lr = LR_GPU()
            # clf_lr.fit(x_tr[i], y_tr[i])
            # label_LR = clf_lr.predicted(x_te[i])
            # acc[i].append(fac.get_acc(y_te[i], label_LR)[0])

            # LR 02
            clf_lr = LogisticRegression()
            clf_lr.fit(x_tr[i], y_tr[i])
            label_LR = clf_lr.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_LR)[0])

            # CART 03
            clf_cart = DecisionTreeClassifier()
            clf_cart.fit(x_tr[i], y_tr[i])
            label_cart = clf_cart.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_cart)[0])

            # # RF 04
            clf_rf = TGBMClassifier()
            clf_rf.fit(x_tr[i], y_tr[i].ravel())
            label_rf = clf_rf.predict(x_te[i])
            acc[i].append(fac.get_acc(y_te[i], label_rf)[0])

            print('DECOC round', i, 'end')

        acc = np.array(acc)
        acc_mean = acc.mean(axis=0)
        # fun_best = np.where(acc_mean == max(acc_mean))
        fun_best = np.argmax(acc_mean)

        return fun_best, bestK
示例#3
0
文件: DOVO.py 项目: inbliz/gpuimlearn
    def fun_predict(self, x_te, C, D, L):
        print('func_predict')

        num = len(D)
        cf = C[0]
        ck = C[1]

        allpre = np.zeros((len(x_te), num))
        for i in range(num):
            train = D[i]
            traindata = train[:, 0:-1]
            trainlabel = train[:, -1]

            if cf[i] == 0:
                # svm
                print('SVM predict')
                clf_svm = SVC()
                clf_svm.fit(traindata, trainlabel.ravel())
                label_svm = clf_svm.predict(x_te)
                allpre[:, i] = label_svm
            elif cf[i] == 1:
                # knn
                clf_knn = KNN_GPU(k=ck[i])
                clf_knn.fit(traindata, trainlabel)
                label_knn = clf_knn.predict(x_te)
                allpre[:, i] = label_knn
            elif cf[i] == 2:
                # LR
                print('LR predict')
                clf_lr = LogisticRegression()
                clf_lr.fit(traindata, trainlabel.ravel())
                label_LR = clf_lr.predict(x_te)
                allpre[:, i] = label_LR
            elif cf[i] == 3:
                # CART
                print('CART predict')
                clf_xgb = DecisionTreeClassifier()
                clf_xgb.fit(traindata, trainlabel)
                label_xgb = clf_xgb.predict(x_te)
                allpre[:, i] = label_xgb
            elif cf[i] == 4:
                # Rf
                print('RF predict')
                clf_rf = TGBMClassifier()
                clf_rf.fit(traindata, trainlabel.ravel())
                label_rf = clf_rf.predict(x_te)
                allpre[:, i] = label_rf
            else:
                print('error !!!! DOAO.fun_predict')

            label = L[i]
            for j in range(len(x_te)):
                allpre[j, i] = label[0] if allpre[j, i] == 0 else label[1]

        # print('predict end for')
        pre = mode(allpre, axis=1)[0]
        return pre
示例#4
0
    def funcPreEDOVO(self, x_test, y_test, C, D):

        numC = np.asarray(C).shape[0]
        num_set = len(y_test)
        allpre = np.zeros([num_set, numC])

        for i in range(numC):

            train = D[i]
            traindata = np.array(train[:, 0:-1])
            trainlabel = np.array(train[:, -1], dtype='int64')
            if C[i, 0] == 0:
                print('test0')
                # svm
                clf_svm = SVC()
                clf_svm.fit(traindata, trainlabel.ravel())
                label_svm = clf_svm.predict(x_test)
                allpre[:, i] = label_svm
            elif C[i, 0] == 1:
                # print('test1')
                # knn
                clf_knn = KNN_GPU(k=C[i][1])
                # clf_knn = KNN_torch(k=C[i][1])
                clf_knn.fit(traindata, trainlabel)
                label_knn = clf_knn.predict(x_test)
                allpre[:, i] = label_knn.ravel()
            elif C[i, 0] == 2:
                print('test2')
                # LR
                clf_lr = LogisticRegression()
                clf_lr.fit(traindata, trainlabel)
                label_LR = clf_lr.predict(x_test)
                allpre[:, i] = label_LR
                # # LR
                # clf_lr = LR_GPU()
                # clf_lr.fit(traindata, trainlabel)
                # label_LR = clf_lr.predicted(x_test)
                # allpre[:, i] = label_LR
            elif C[i, 0] == 3:
                print('test3')
                # CART
                clf_cart = DecisionTreeClassifier()
                clf_cart.fit(traindata, trainlabel)
                label_cart = clf_cart.predict(x_test)
                allpre[:, i] = label_cart
            elif C[i, 0] == 4:
                print('test4')
                # RandomForest
                clf_ada = TGBMClassifier()
                clf_ada.fit(traindata, trainlabel.ravel())
                label_ada = clf_ada.predict(x_test)
                allpre[:, i] = label_ada

            else:
                print('error !!!! DECOC.funcPreEDOVO')

        return allpre