示例#1
0
文件: fit_poly.py 项目: connersk/ML
def fit_polynomial(X, Y, M, out_png=None):
    '''Problem 2.1'''
    ndata = len(X)
    nparams = M + 1
    Y = np.reshape(Y, (ndata, 1))

    phi = gradient_descent.polynomial_design_matrix(X, M)
    weights = gradient_descent.analytic_least_squares(phi, Y)
    if out_png:
        plt.figure(1, figsize=(4, 4))
        plt.clf()
        plt.plot(X, np.array(Y), 'o', color='blue', label='data')

        xp = np.linspace(0, 1, 100)
        y_model = np.cos(np.pi * xp) + np.cos(2 * np.pi * xp)
        plt.plot(xp, y_model, color='orange', label='true model')

        y_regress = np.dot(gradient_descent.polynomial_design_matrix(xp, M),
                           weights.reshape((nparams, 1)))
        plt.plot(xp, y_regress, color='red', label='fitted model')
        SSE = gradient_descent.least_squares_objective(
            weights, gradient_descent.polynomial_design_matrix(X, M),
            Y.reshape((ndata, 1)))

        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(loc='best')
        plt.title('M = {}, SSE = {:.2f}'.format(M, SSE))
        plt.tight_layout()
        plt.savefig(out_png)
    return weights
示例#2
0
def R_squared(weights, X, Y, M):

    A = np.empty((len(X), M + 1))
    for i in range(M + 1):
        A[:, i] = X**i
    TSS = np.sum((Y - np.mean(Y))**2)
    RSS = gradient_descent.least_squares_objective(weights, A, Y)
    print TSS, RSS
    return (TSS - RSS) / TSS
示例#3
0
def main():
    X, Y = getData(False)
    ndata = len(X)
    for M in (0,1,2,3,4,6,8,10):
        #print 'M=%i' % M
        weights, _ = fit_polynomial(X,Y,M,'sgd_plots/regress_m_%i.png' % M)
        #print weights
        print 'SSE = {}'.format(gd.least_squares_objective(weights, gd.polynomial_design_matrix(X, M), Y.reshape((ndata,1))))
        print 'SSE derivative = {}'.format(gd.least_squares_gradient(weights, gd.polynomial_design_matrix(X, M), Y.reshape((ndata,1))))

        print 'M=%i & ' % M, 'w = ', [round(w,3) for w in weights[:,0]], '\\\\'
示例#4
0
def main():
    X, Y = loadFittingDataP1.getData()
    Y = Y.reshape((100, 1))
    w_opt = analytic_least_squares(X, Y)

    #Problem 1.3.abc, running batch and stochastic gd on a variety of start points, saving num_iters, weights, calcing
    #difference, plot both num iters and the difference
    #----------------------------------------------------------------------------------------
    start_points = [
        np.zeros((10, 1)),
        np.zeros((10, 1)) + 10,
        np.zeros((10, 1)) - 10,
        np.zeros((10, 1)) + 100,
        np.zeros((10, 1)) - 100,
        np.zeros((10, 1)) + 1000,
        np.zeros((10, 1)) - 1000, 20 * np.random.random_sample((10, 1)) - 10
    ]
    batch_iterations = []
    batch_weights = []
    batch_diff = []
    batch_f = []
    stochastic_iterations = []
    stochastic_weights = []
    stochastic_diff = []
    stochastic_f = []

    fig, ax = plt.subplots()
    #labels = map(lambda x: str([round(i,2) for i in x]), points)

    start_points = [np.zeros((10, 1))]

    for point in start_points:

        #batch gd
        w_batch, d_batch, f_batch, iters_batch = gradient_descent.run_gradient_descent(
            func=lambda theta: least_squares_objective(theta, X, Y),
            deriv=lambda theta: least_squares_gradient(theta, X, Y),
            x0=point,
            h=10.**(-6),
            tol=0.1)
        batch_weights.append(w_batch[-1])
        batch_iterations.append(
            iters_batch *
            100)  #since every batch iteration is 1 round of the whole dataset
        batch_diff.append(
            np.linalg.norm(w_opt - w_batch[-1]) / np.linalg.norm(w_opt))
        batch_f.append(f_batch)
        plt.plot(range(0, iters_batch + 1),
                 map(np.log, f_batch[:-1]),
                 color="k")

        #stochastic gd
        w_sgd, iters_sgd, err_sgd, f_sgd = gradient_descent.stochastic_gradient_descent(
            func=least_squares_objective,
            deriv=least_squares_gradient,
            X=X,
            Y=Y,
            weights0=point,
            tau=10.**8,
            k=.75,
            tol=.1,
            return_f=True)
        stochastic_weights.append(w_sgd)
        stochastic_iterations.append(iters_sgd)
        stochastic_diff.append(
            np.linalg.norm(w_opt - w_sgd) / np.linalg.norm(w_opt))
        stochastic_f.append(stochastic_f)
        print iters_sgd / 100
        print len(f_sgd)
        plt.plot(range(0, iters_sgd / 100), map(np.log, f_sgd), color="b")

    ax.set_xlabel('Iterations')
    ax.set_ylabel('Objective function', color='k')
    plt.title("Least Squares Objective stuff")
    #plt.legend(labels,shadow=True,fancybox=True)
    plt.show()

    print "batch iterations"
    print batch_iterations
    print "batch diff"
    print batch_diff

    print "stochastic iterations"
    print stochastic_iterations
    print "stochastic_diff"
    print stochastic_diff