def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import('assay')) random_seed = gn.get_arg('random_seed') sc.tl.tsne(adata, random_state=random_seed) X_tsne = adata.obsm['X_tsne'] plt.figure() plt.scatter(X_tsne[:, 0], X_tsne[:, 1], 5000 / adata.shape[0]) plt.xlabel('t-SNE dim. 1') plt.ylabel('t-SNE dim. 2') plt.tight_layout() gn.add_current_figure_to_results('t-SNE plot: each dot represents a cell', dpi=75) pca_export = { 'dimNames': ['t-SNE dim. 1', 't-SNE dim. 2'], 'coords': { sample_id: X_tsne[i, :].tolist() for i, sample_id in enumerate(adata.obs_names) }, } gn.export_statically(pca_export, 't-SNE coordinates') gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() df = gn.pandas_from_assay(gn.get_import('assay')) mingenes = gn.get_arg('min_genes_per_cell') maxgenes = gn.get_arg('max_genes_per_cell') mt_percent = gn.get_arg('mt_genes_percent')/100.0 uniquegenecount = df.astype(bool).sum(axis=0) totalgenecount = df.sum(axis=0) mtrows = df[df.index.str.startswith('MT')] mtgenecount = mtrows.sum(axis=0) mtpercent = mtgenecount.div(totalgenecount) colsmatching = uniquegenecount.T[(uniquegenecount.T >= mingenes) & (uniquegenecount.T <= maxgenes) & (mtpercent.T <= mt_percent)].index.values adata = df.loc[:, colsmatching] num_orig_cells = uniquegenecount.T.index.size num_filtered_cells = len(colsmatching) num_lt_min = uniquegenecount.T[(uniquegenecount.T < mingenes)].index.size num_gt_max = uniquegenecount.T[(uniquegenecount.T > maxgenes)].index.size num_gt_mt = uniquegenecount.T[(mtpercent.T > mt_percent)].index.size gn.add_result("Number of cells is now {} out of {} original cells with {} below min genes, {} above max genes, and {} above mt percentage threshold.".format(num_filtered_cells, num_orig_cells, num_lt_min, num_gt_max, num_gt_mt), "markdown") plt.figure() plt.subplot(2, 1, 1) plt.title('Unique gene count distribution') sns.distplot(uniquegenecount, bins=int(200), color = 'darkblue', kde_kws={'linewidth': 2}) plt.ylabel('Frequency') plt.xlabel('Gene count') plt.subplot(2, 1, 2) plt.title('MT Percent Distribution') sns.distplot(mtpercent*100.0, bins=int(200), color = 'darkblue', kde_kws={'linewidth': 2}) plt.ylabel('Frequency') plt.xlabel('MT Percent') plt.tight_layout() caption = ( 'The distribution of expression levels for each cell with various metrics.' ) gn.add_current_figure_to_results(caption, zoom=1, dpi=75) gn.export(gn.assay_from_pandas(adata), "Filtered Cells Assay", dynamic=False) toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished cell filtering step in {} seconds*".format(time_passed) gn.add_result(timing, "markdown") gn.commit()
def main(): gn = Granatum() assay = gn.get_import('assay') matrix = np.array(assay.get('matrix')) sample_ids = assay.get('sampleIds') num_samples = matrix.shape[1] # ---- PCA -------------------------------------------------------------------- X = np.transpose(matrix) model = PCA(n_components=2) Y_pca = model.fit_transform(X) pca_export = { 'dimNames': ['PCA-1', 'PCA-2'], 'coords': { sample_id: Y_pca[i, :].tolist() for i, sample_id in enumerate(sample_ids) }, } gn.export_statically(pca_export, 'pca') plt.figure() plt.scatter(Y_pca[:, 0], Y_pca[:, 1], 5000 / num_samples) plt.tight_layout() gn.add_current_figure_to_results( 'Principal Component Analysis (PCA) scatter-plot', dpi=75) # ---- T-SNE ------------------------------------------------------------------ X = np.transpose(matrix) model = TSNE(n_jobs=multiprocessing.cpu_count()) Y_tsne = model.fit_transform(X) tsne_export = { 'dimNames': ['tSNE-1', 'tSNE-2'], 'coords': { sample_id: Y_tsne[i, :].tolist() for i, sample_id in enumerate(sample_ids) }, } gn.export_statically(tsne_export, 'tsne') plt.figure() plt.scatter(Y_tsne[:, 0], Y_tsne[:, 1], s=5000 / num_samples) plt.tight_layout() gn.add_current_figure_to_results( 't-Distributed Stochastic Neighbor Embedding (t-SNE) scatter-plot', dpi=75) gn.commit()
def main(): gn = Granatum() df = gn.pandas_from_assay(gn.get_import("assay")) epsilon = gn.get_arg('epsilon') min_cells_expressed = gn.get_arg('min_cells_expressed') filter_df = pd.DataFrame({'gene': df.index}) filter_df['sum_expr'] = [sum(df.values[i, :]) for i in range(df.shape[0])] filter_df['avg_expr'] = filter_df['sum_expr'] / df.shape[1] filter_df['num_expressed_genes'] = [ sum([x > epsilon for x in df.values[i, :]]) for i in range(df.shape[0]) ] filter_df[ 'removed'] = filter_df['num_expressed_genes'] < min_cells_expressed new_df = df.loc[np.logical_not(filter_df['removed'].values), :] gn.add_result( "\n".join([ "Number of genes before filtering: **{}**".format(df.shape[0]), "", "Number of genes after filtering: **{}**".format(new_df.shape[0]), ]), type="markdown", ) if filter_df.shape[0] > 0: filter_df_deleted = filter_df.loc[filter_df['removed'].values, :].drop( 'removed', axis=1) gn.add_result( { 'title': f"Removed genes ({filter_df_deleted.shape[0]})", 'orient': 'split', 'columns': filter_df_deleted.columns.values.tolist(), 'data': filter_df_deleted.values.tolist(), }, data_type='table', ) else: gn.add_result( f"No genes were removed. All {df.shape[0]} genes were kept. " f"See attachment **gene_selection.csv** for detail.", 'markdown', ) gn.export(filter_df.to_csv(index=False), 'gene_selection.csv', kind='raw', meta=None, raw=True) gn.export(gn.assay_from_pandas(new_df), "Filtered Assay", dynamic=False) gn.commit()
def main(): gn = Granatum() set1 = gn.get_import('set1') set2 = gn.get_import('set2') set3 = gn.get_import('set3') maxScore = gn.get_arg('maxScore') minScore = gn.get_arg('minScore') labelSet1 = gn.get_arg("labelSet1") labelSet2 = gn.get_arg("labelSet2") labelSet3 = gn.get_arg("labelSet3") wordcloud = gn.get_arg("wordcloud") filtered_set1 = dict(filter(lambda elem: (isinstance(elem[1], numbers.Number) & (not isnan(elem[1]))) & (elem[1] >= minScore) & (elem[1] <= maxScore), set1.items())) filtered_set2 = dict(filter(lambda elem: (isinstance(elem[1], numbers.Number) & (not isnan(elem[1]))) & (elem[1] >= minScore) & (elem[1] <= maxScore), set2.items())) filtered_set3 = dict(filter(lambda elem: (isinstance(elem[1], numbers.Number) & (not isnan(elem[1]))) & (elem[1] >= minScore) & (elem[1] <= maxScore), set3.items())) merged_frequencies = {**filtered_set1, **filtered_set2, **filtered_set3} packedsets = [set(filtered_set1.keys()), set(filtered_set2.keys()), set(filtered_set3.keys())] fig, ax = plt.subplots(1,1) fig.set_size_inches(5,4) caption = ( 'The area weighted Venn diagram is shown for the gene sets matching the criteria' ) if wordcloud: out = venn3_wordcloud(packedsets, set_labels=(labelSet1, labelSet2, labelSet3), wordcloud_kwargs=dict(max_font_size=36), word_to_frequency=merged_frequencies, ax=ax) for text in out.set_labels: if text: text.set_fontsize(18) for text in out.subset_labels: if text: text.set_fontsize(16) text.set_path_effects([path_effects.SimpleLineShadow(), path_effects.Normal()]) else: out = venn3(packedsets, set_labels=(labelSet1, labelSet2, labelSet3)) venn3_circles(packedsets, linestyle='dashed', linewidth=1, color="black") for text in out.set_labels: if text: text.set_fontsize(18) for text in out.subset_labels: if text: text.set_fontsize(16) text.set_path_effects([path_effects.SimpleLineShadow(), path_effects.Normal()]) gn.add_current_figure_to_results(caption) gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() assay = gn.pandas_from_assay(gn.get_import('assay')) groups = gn.get_import('groups') reflabels = gn.get_import('reflabels') remove_cells = gn.get_arg('remove_cells') inv_map = {} for k, v in groups.items(): inv_map[v] = inv_map.get(v, []) + [k] inv_map_ref = {} for k, v in reflabels.items(): inv_map_ref[v] = inv_map_ref.get(v, []) + [k] group_relabel = {} mislabelled_cells = [] for k, v in inv_map.items(): vset = set(v) label_scores = {} for kref, vref in inv_map_ref.items(): label_scores[kref] = len(set(vref).intersection(vset)) group_relabel[k] = max(label_scores, key=label_scores.get) mislabelled_cells = mislabelled_cells + list( vset.difference(set(inv_map_ref[group_relabel[k]]))) if remove_cells: gn.add_result( "Dropping {} mislabelled cells".format(len(mislabelled_cells)), "markdown") assay = assay.drop(mislabelled_cells, axis=1) groups = { key: val for key, val in groups.items() if not key in mislabelled_cells } for cell in groups: groups[cell] = group_relabel[groups[cell]] toc = time.perf_counter() time_passed = round(toc - tic, 2) gn.export_statically(gn.assay_from_pandas(assay), "Corresponded assay") gn.export_statically(groups, "Corresponded labels") timing = "* Finished sample coloring step in {} seconds*".format( time_passed) gn.add_result(timing, "markdown") gn.commit()
def main(): gn = Granatum() assay = gn.get_import('assay') matrix = np.array(assay.get('matrix')) transformed_matrix = matrix - matrix.mean(axis=1, keepdims=True) assay['matrix'] = transformed_matrix.tolist() plot_distribution_comparison(matrix, transformed_matrix, gn) gn.export_statically(assay, 'Gene centered assay') gn.commit()
def main(): gn = Granatum() assay = gn.get_import('assay') matrix = np.array(assay.get('matrix')) take_log = gn.get_arg('take_log') log_base = gn.get_arg('logBase') epsilon = gn.get_arg('epsilon') transformed_matrix = (matrix + epsilon) / (1 - matrix + epsilon) if take_log: transformed_matrix = np.log(transformed_matrix) / np.log(log_base) non_zero_values_before = matrix.flatten() non_zero_values_before = non_zero_values_before[( non_zero_values_before > np.percentile(non_zero_values_before, 5))] non_zero_values_after = transformed_matrix.flatten() non_zero_values_after = non_zero_values_after[( non_zero_values_after > np.percentile(non_zero_values_after, 5))] plt.figure() plt.subplot(2, 1, 1) plt.title('Before beta-to-m transformation') plt.hist(non_zero_values_before, bins=100) plt.ylabel('Frequency') plt.xlabel('Expression level') plt.subplot(2, 1, 2) plt.title('After beta-to-m transformation') plt.hist(non_zero_values_after, bins=100) plt.ylabel('Frequency') plt.xlabel('Expression level') plt.tight_layout() caption = ( 'The distribution of expression level before and after beta-to-m transformation. Only the values greater ' 'than the 5 percentile (usually zero in single-cell data) and lower than 95 percentile are considered.' ) gn.add_current_figure_to_results(caption, zoom=2, dpi=50) assay['matrix'] = transformed_matrix.tolist() gn.export_statically(assay, 'Beta-to-m transformed assay') gn.commit()
def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import("assay")) num_top_comps = gn.get_arg("num_top_comps") sc.pp.pca(adata, 20) variance_ratios = adata.uns["pca"]["variance_ratio"] pc_labels = ["PC{}".format(x + 1) for x in range(len(variance_ratios))] plt.figure() plt.bar(pc_labels, variance_ratios) plt.tight_layout() gn.add_current_figure_to_results( "Explained variance (ratio) by each Principal Component (PC)", height=350, dpi=75) X_pca = adata.obsm["X_pca"] for i, j in combinations(range(num_top_comps), 2): xlabel = "PC{}".format(i + 1) ylabel = "PC{}".format(j + 1) plt.figure() plt.scatter(X_pca[:, i], X_pca[:, j], s=5000 / adata.shape[0]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.tight_layout() gn.add_current_figure_to_results("PC{} vs. PC{}".format(i + 1, j + 1), dpi=75) pca_export = { "dimNames": [xlabel, ylabel], "coords": { sample_id: X_pca[k, [i, j]].tolist() for k, sample_id in enumerate(adata.obs_names) }, } gn.export(pca_export, "PC{} vs. PC{}".format(i + 1, j + 1), kind="sampleCoords", meta={}) gn.commit()
def main(): gn = Granatum() assay = gn.get_import('assay') args_for_init = { 'selected_embedding': gn.get_arg('selectedEmbedding'), 'selected_clustering': gn.get_arg('selectedClustering'), 'n_components': gn.get_arg('nComponents'), 'n_clusters': gn.get_arg('nClusters'), 'find_best_number_of_cluster': gn.get_arg('findBestNumberOfCluster'), } args_for_fit = { 'matrix': np.transpose(np.array(assay.get('matrix'))), 'sample_ids': assay.get('sampleIds'), } granatum_clustering = GranatumDeepClustering(**args_for_init) fit_results = granatum_clustering.fit(**args_for_fit) fit_exp = fit_results.get('clusters') gn.export_statically(fit_exp, 'Cluster assignment') newdictstr = ['"'+str(k)+'"'+", "+str(v) for k, v in fit_exp.items()] gn.export("\n".join(newdictstr), 'Cluster assignment.csv', kind='raw', meta=None, raw=True) md_str = f"""\ ## Results * Cluster array: `{fit_results.get('clusters_array')}` * Cluster array: `{fit_results.get('clusters_array')}` * nClusters: {fit_results.get('n_clusters')} * Number of components: {fit_results.get('n_components')} * Outliers: {fit_results.get('outliers')}""" # gn.add_result(md_str, 'markdown') gn.add_result( { 'orient': 'split', 'columns': ['Sample ID', 'Cluster Assignment'], 'data': [{'Sample ID':x, 'Cluster Assignment':y} for x, y in zip(assay.get('sampleIds'), fit_results.get('clusters_array'))], }, 'table', ) gn.commit()
def main(): gn = Granatum() df = gn.pandas_from_assay(gn.get_import('assay')) n_steps = gn.get_arg('n_steps') min_theta = gn.get_arg('min_theta') max_theta = gn.get_arg('max_theta') jammit = JAMMIT.from_dfs([df]) jammit.scan( thetas=np.linspace(min_theta, max_theta, n_steps), calculate_fdr=True, n_perms=10, verbose=1, convergence_threshold=0.000000001, ) jammit_result = jammit.format(columns=['theta', 'alpha', 'n_sigs', 'fdr']) jammit_result['theta'] = jammit_result['theta'].round(3) jammit_result['alpha'] = jammit_result['alpha'].round(3) plt.plot(jammit_result['alpha'], jammit_result['fdr']) plt.xlabel('alpha') plt.ylabel('FDR') gn.add_current_figure_to_results('FDR plotted against alpha', height=400) gn.add_result( { 'pageSize': n_steps, 'orient': 'split', 'columns': [{ 'name': h, 'type': 'number', 'round': 3 } for h in jammit_result.columns], 'data': jammit_result.values.tolist(), }, data_type='table', ) gn.commit()
def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import("assay")) num_cells_to_sample = gn.get_arg("num_cells_to_sample") random_seed = gn.get_arg("random_seed") np.random.seed(random_seed) num_cells_before = adata.shape[0] num_genes_before = adata.shape[1] if num_cells_to_sample > 0 and num_cells_to_sample < 1: num_cells_to_sample = round(num_cells_before * num_cells_to_sample) else: num_cells_to_sample = round(num_cells_to_sample) if num_cells_to_sample > num_cells_before: num_cells_to_sample = num_cells_before if num_cells_to_sample < 1: num_cells_to_sample = 1 sampled_cells_idxs = np.sort(np.random.choice(num_cells_before, num_cells_to_sample, replace=False)) adata = adata[sampled_cells_idxs, :] gn.add_result( "\n".join( [ "The assay before down-sampling has **{}** cells and {} genes.".format( num_cells_before, num_genes_before ), "", "The assay after down-sampling has **{}** cells and {} genes.".format(adata.shape[0], adata.shape[1]), ] ), type="markdown", ) gn.export(gn.assay_from_ann_data(adata), "Down-sampled Assay", dynamic=False) gn.commit()
def main(): gn = Granatum() sample_coords = gn.get_import("viz_data") df = gn.pandas_from_assay(gn.get_import("assay")) gene_ids = parse(gn.get_arg("gene_ids")) groups = gn.get_import("groups") alpha = 1.0 - gn.get_arg("confint") / 100.0 min_zscore = st.norm.ppf(gn.get_arg("confint")) min_dist = 0.1 coords = sample_coords.get("coords") dim_names = sample_coords.get("dimNames") inv_map = {} for k, v in groups.items(): inv_map[v] = inv_map.get(v, []) + [k] for gene in gene_ids: plt.figure() # First form a statistic for all values, also puts out plot params = plot_fits(df.loc[gene, :].dropna().to_list(), color="r", alpha=alpha, min_dist=min_dist, min_zscore=min_zscore, label="All") for k, v in inv_map.items(): plt.subplot(1, 1, 1) plt.title('Gene expression level distribution for each cluster') plot_predict(df.loc[gene, v].dropna().to_list(), params, label=k) # sns.distplot(df.loc[gene,:].to_list(), bins=int(100), color = 'darkblue', kde_kws={'linewidth': 2}) plt.ylabel('Frequency') plt.xlabel('Gene expression') plt.legend() plt.tight_layout() caption = ( "The distribution of expression levels for gene {}.".format(gene)) gn.add_current_figure_to_results(caption, zoom=1, dpi=75) gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() df = gn.pandas_from_assay(gn.get_import('assay')) n_neighbors = gn.get_arg('n_neighbors') min_dist = gn.get_arg('min_dist') metric = gn.get_arg('metric') random_seed = gn.get_arg('random_seed') embedding = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, metric=metric, random_state=random_seed).fit_transform(df.values.T) plt.figure() plt.scatter(embedding[:, 0], embedding[:, 1], min(5000 / df.shape[0], 36.0)) plt.xlabel('UMAP dim. 1') plt.ylabel('UMAP dim. 2') plt.tight_layout() gn.add_current_figure_to_results('UMAP plot: each dot represents a cell', dpi=75) pca_export = { 'dimNames': ['UMAP dim. 1', 'UMAP dim. 2'], 'coords': { sample_id: embedding[i, :].tolist() for i, sample_id in enumerate(df.columns) }, } gn.export_statically(pca_export, 'UMAP coordinates') toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished UMAP step in {} seconds*".format(time_passed) gn.add_result(timing, "markdown") gn.commit()
def main(): gn = Granatum() sample_meta_true = gn.get_import("sample_meta_true") sample_meta_predicted = gn.get_import("sample_meta_predicted") # Using pandas series to align the two metas in case they have different sample IDs rand_score = adjusted_rand_score(pd.Series(sample_meta_true), pd.Series(sample_meta_predicted)) mutual_info_score = adjusted_mutual_info_score( pd.Series(sample_meta_true), pd.Series(sample_meta_predicted)) results_markdown = "\n".join([ "Adjusted Rand score: **{}**".format(rand_score), "", "Adjusted mutual information score: **{}**".format(mutual_info_score), ]) gn.add_result(results_markdown, "markdown") gn.commit()
def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import("assay")) min_cells_expressed = gn.get_arg("min_cells_expressed") min_mean = gn.get_arg("min_mean") max_mean = gn.get_arg("max_mean") min_disp = gn.get_arg("min_disp") max_disp = gn.get_arg("max_disp") num_genes_before = adata.shape[1] sc.pp.filter_genes(adata, min_cells=min_cells_expressed) filter_result = sc.pp.filter_genes_dispersion( adata.X, flavor='seurat', min_mean=math.log(min_mean), max_mean=math.log(max_mean), min_disp=min_disp, max_disp=max_disp, ) adata = adata[:, filter_result.gene_subset] sc.pl.filter_genes_dispersion(filter_result) gn.add_current_figure_to_results( "Each dot represent a gene. The gray dots are the removed genes. The x-axis is log-transformed.", zoom=3, dpi=50, height=400, ) gn.add_result( "\n".join( [ "Number of genes before filtering: **{}**".format(num_genes_before), "", "Number of genes after filtering: **{}**".format(adata.shape[1]), ] ), type="markdown", ) gn.export(gn.assay_from_ann_data(adata), "Filtered Assay", dynamic=False) gn.commit()
def main(): gn = Granatum() gene_scores = gn.get_import("gene_scores") species = gn.get_arg("species") gset_group_id = gn.get_arg("gset_group_id") n_repeats = gn.get_arg("n_repeats") alterChoice = gn.get_arg("alterChoice") if alterChoice=="pos": gene_scores = dict(filter(lambda elem: elem[1] >= 0.0, gene_scores.items())) elif alterChoice=="neg": gene_scores = dict(filter(lambda elem: elem[1] < 0.0, gene_scores.items())) gene_scores = { k: abs(v) for k, v in gene_scores.items() } gene_ids = gene_scores.keys() gene_scores = gene_scores.values() gene_id_type = guess_gene_id_type(list(gene_ids)[:5]) if gene_id_type != 'symbol': gene_ids = convert_gene_ids(gene_ids, gene_id_type, 'symbol', species) if species == "human": pass elif species == "mouse": gene_ids = zgsea.to_human_homolog(gene_ids, "mouse") else: raise ValueError() result_df = zgsea.gsea(gene_ids, gene_scores, gset_group_id, n_repeats=n_repeats) if result_df is None: gn.add_markdown('No gene set is enriched with your given genes.') else: result_df = result_df[["gset_name", "gset_size", "nes", "p_val", "fdr"]] gn.add_pandas_df(result_df) gn.export(result_df.to_csv(index=False), 'gsea_results.csv', kind='raw', meta=None, raw=True) newdict = dict(zip(result_df.index.tolist(), result_df['nes'].tolist())) print(newdict, flush=True) gn.export(newdict, 'nes', 'geneMeta') gn.commit()
def main(): gn = Granatum() df = gn.pandas_from_assay(gn.get_import("assay")) frob_norm = np.linalg.norm(df.values) df = df / frob_norm gn.add_result( f"""\ The original assay had Frobenius norm of {frob_norm}, after normalization its Frobenius norm is now {np.linalg.norm(df.values)}""", 'markdown', ) gn.export(gn.assay_from_pandas(df), "Frobenius normalized assay", dynamic=False) gn.commit()
def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import('assay')) outliers = gn.get_arg('outliers') num_cells_before = adata.shape[0] kept_cell_ids = adata.obs_names.drop(outliers, errors='ignore').values adata = adata[kept_cell_ids, :] gn.export_statically(gn.assay_from_ann_data(adata), 'Outlier removed assay') gn.add_result( 'You removed {} outliers from {} cells, the result assay has {} cells (and {} genes).'.format( len(outliers), num_cells_before, adata.shape[0], adata.shape[1] ), type='markdown' ) gn.commit()
def main(): gn = Granatum() n_neighbors = gn.get_arg('nNeighbors', 15) neighbor_method = gn.get_arg('neighborMethod', 'gauss') assay = gn.get_import('assay') adata = sc.AnnData(np.array(assay.get('matrix')).transpose()) adata.var_names = assay.get('geneIds') adata.obs_names = assay.get('sampleIds') sc.pp.neighbors(adata, n_neighbors=n_neighbors, use_rep='X', method=neighbor_method) sc.tl.dpt(adata, n_branchings=1) gn._pickle(adata, 'adata') # dpt_groups for spec in [{ 'col': 'dpt_order', 'caption': 'Cell order' }, { 'col': 'dpt_groups', 'caption': 'Cell groups' }]: fig = plt.figure() sc.pl.diffmap(adata, color=spec['col']) gn.add_current_figure_to_results(spec['caption']) gn.export_statically( dict( zip(adata.obs_names.tolist(), adata.obs[spec['col']].values.tolist())), spec['col']) gn.commit()
def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import('assay')) sample_coords = gn.get_import('sampleCoords') random_seed = gn.get_arg('random_seed') sc.pp.neighbors(adata, n_neighbors=20, use_rep='X', method='gauss') sc.tl.louvain(adata, random_state=random_seed) cluster_assignment = dict( zip(adata.obs_names, ['Cluster {}'.format(int(c) + 1) for c in adata.obs['louvain']])) gn.export_statically(cluster_assignment, 'Cluster assignment') dim_names = sample_coords.get('dimNames') coords_dict = sample_coords.get('coords') plt.figure() clusters = adata.obs['louvain'].cat.categories for c in clusters: cell_ids = adata.obs_names[adata.obs['louvain'] == c] coords = [coords_dict.get(x) for x in cell_ids] coords_x = [x[0] for x in coords] coords_y = [x[1] for x in coords] plt.scatter(coords_x, coords_y, label='Cluster {}'.format(int(c) + 1)) plt.xlabel(dim_names[0]) plt.ylabel(dim_names[1]) plt.legend() plt.tight_layout() gn.add_current_figure_to_results( 'Scatter-plot using imported cell coordinates. Each dot represents a cell. The colors indicate the indentified cell clusters.', dpi=75) gn.commit()
def main(): gn = Granatum() assay_df = gn.pandas_from_assay(gn.get_import('assay')) grdict = gn.get_import('groupVec') phe_dict = pd.Series(gn.get_import('groupVec')) groups = set(parse(gn.get_arg('groups'))) inv_map = {} for k, v in grdict.items(): if v in groups: inv_map[v] = inv_map.get(v, []) + [k] cells = [] for k, v in inv_map.items(): cells.extend(v) assay_df = assay_df.loc[:, cells] assay_df = assay_df.sparse.to_dense().fillna(0) #assay_mat = r['as.matrix'](pandas2ri.py2ri(assay_df)) # assay_mat = r['as.matrix'](conversion.py2rpy(assay_df)) phe_vec = phe_dict[assay_df.columns] r.source('./drive_DESeq2.R') ret_r = r['run_DESeq'](assay_df, phe_vec) ret_r_as_df = r['as.data.frame'](ret_r) # ret_py_df = pandas2ri.ri2py(ret_r_as_df) # TODO: maybe rename the columns to be more self-explanatory? result_df = ret_r_as_df result_df = result_df.sort_values('padj') result_df.index.name = 'gene' gn.add_pandas_df(result_df.reset_index(), description='The result table as returned by DESeq2.') gn.export(result_df.to_csv(), 'DESeq2_results.csv', raw=True) significant_genes = result_df.loc[ result_df['padj'] < 0.05]['log2FoldChange'].to_dict() gn.export(significant_genes, 'Significant genes', kind='geneMeta') gn.commit()
def main(): gn = Granatum() assay = gn.get_import('assay') x = np.array(assay.get('matrix')).astype(np.float) log_base = gn.get_arg('log_base') n_top = gn.get_arg('n_top') n_bottom = gn.get_arg('n_bottom') which_mid = gn.get_arg('which_mid') gene_df = pd.DataFrame( { 'row_num': range(x.shape[0]), 'gene_id': assay.get('geneIds'), 'exp_mean': np.mean(x, axis=1), 'exp_std': np.std(x, axis=1), } ) gene_df = gene_df.sort_values('exp_mean', ascending=False) top_gene_row = gene_df.head(n_top).sort_values('exp_std', ascending=False).iloc[0] bottom_gene_row = gene_df.tail(n_bottom).sort_values('exp_std').iloc[0] hk_gene = np.clip(x[top_gene_row['row_num'], :], a_min=0.00001, a_max=None) neg_gene = x[bottom_gene_row['row_num'], :] if which_mid == 'mean': alphabk = np.mean(neg_gene[:]) elif which_mid == 'median': alphabk = np.median(neg_gene[:]) else: raise ValueError() loghkdatabk = np.log(hk_gene - alphabk) / np.log(log_base) # Drop NAN values loghkdatabk = loghkdatabk[~np.isnan(loghkdatabk)] c = (np.std(neg_gene[:], ddof=1) / np.std(loghkdatabk, ddof=1))**2 xbk = x - alphabk transformed_matrix = np.log((xbk + np.sqrt(xbk**2 + c)) / 2) / np.log(log_base) gn.add_result( '\n'.join( [ f"Selected benchmarking genes:", f" * housekeeping gene: **{top_gene_row['gene_id']}** " f"(mean: {top_gene_row['exp_mean']}, std: {top_gene_row['exp_std']}) ", f" * negative control gene: **{bottom_gene_row['gene_id']}**" f"(mean: {bottom_gene_row['exp_mean']}, std: {bottom_gene_row['exp_std']})", f"", f"Final formula is `y = log{log_base}((z + sqrt(z^2 + c))/2)`, where `z = x - {alphabk}` and `c = {c}`." ] ), 'markdown' ) non_zero_values_before = x.flatten() non_zero_values_before = non_zero_values_before[(non_zero_values_before > np.percentile(non_zero_values_before, 5))] non_zero_values_after = transformed_matrix.flatten() non_zero_values_after = non_zero_values_after[(non_zero_values_after > np.percentile(non_zero_values_after, 5))] plt.figure() plt.subplot(2, 1, 1) plt.title('Before glog transformation') plt.hist(non_zero_values_before, bins=100) plt.ylabel('Frequency') plt.xlabel('Expression level') plt.subplot(2, 1, 2) plt.title('After glog transformation') plt.hist(non_zero_values_after, bins=100) plt.ylabel('Frequency') plt.xlabel('Expression level') plt.tight_layout() caption = ( 'The distribution of expression level before and after glog transformation. Only the values greater ' 'than the 5 percentile (usually zero in single-cell data) and lower than 95 percentile are considered.' ) gn.add_current_figure_to_results(caption, zoom=2, dpi=50) assay['matrix'] = transformed_matrix.tolist() gn.export_statically(assay, 'GLog transformed assay') gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() assay = gn.pandas_from_assay(gn.get_import('assay')) # Groups is {"cell":"cluster} groups = gn.get_import('groups') certainty = gn.get_arg('certainty') alpha = 1 - certainty / 100.0 min_zscore = st.norm.ppf(gn.get_arg("certainty") / 100.0) min_dist = 0.1 # Likely we want to filter genes before we get started, namely if we cannot create a good statistic norms_df = assay.apply(np.linalg.norm, axis=1) assay = assay.loc[norms_df.T >= min_dist, :] inv_map = {} inv_map_rest = {} for k, v in groups.items(): inv_map[v] = inv_map.get(v, []) + [k] clist = inv_map_rest.get(v, list(assay.columns)) clist.remove(k) inv_map_rest[v] = clist # Inv map is {"cluster": ["cell"]} print("Completed setup", flush=True) cols = list(inv_map.keys()) colnames = [] for coli in cols: for colj in cols: if coli != colj: colnames.append("{} vs {}".format(coli, colj)) for coli in cols: colnames.append("{} vs rest".format(coli)) # Instead of scoring into a dataframe, let's analyze each statistically # Dict (gene) of dict (cluster) of dict (statistics) # { "gene_name" : { "cluster_name" : { statistics data } }} # Export would be percentage more/less expressed in "on" state # For example gene "XIST" expresses at least 20% more in cluster 1 vs cluster 4 with 95% certainty total_genes = len(assay.index) print("Executing parallel for {} genes".format(total_genes), flush=True) results = Parallel( n_jobs=math.floor(multiprocessing.cpu_count() * 2 * 9 / 10))( delayed(compref)(gene, assay.loc[gene, :], colnames, inv_map, inv_map_rest, alpha, min_dist, min_zscore) for gene in tqdm(list(assay.index))) result = pd.concat(results, axis=0) gn.export_statically(gn.assay_from_pandas(result.T), 'Differential expression sets') gn.export(result.to_csv(), 'differential_gene_sets.csv', kind='raw', meta=None, raw=True) toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished differential expression sets step in {} seconds*".format( time_passed) gn.add_result(timing, "markdown") gn.commit()
def main(): gn = Granatum() sample_coords = gn.get_import("viz_data") df = gn.pandas_from_assay(gn.get_import("assay")) gene_ids = gn.get_arg("gene_ids") overlay_genes = gn.get_arg("overlay_genes") max_colors = gn.get_arg("max_colors") min_level = gn.get_arg("min_level") max_level = gn.get_arg("max_level") convert_to_zscore = gn.get_arg("convert_to_zscore") min_marker_area = gn.get_arg("min_marker_area") max_marker_area = gn.get_arg("max_marker_area") min_alpha = gn.get_arg("min_alpha") max_alpha = gn.get_arg("max_alpha") grey_level = gn.get_arg("grey_level") coords = sample_coords.get("coords") dim_names = sample_coords.get("dimNames") cmaps = [] if overlay_genes: if max_colors == "": numcolors = len(gene_ids.split(',')) cycol = cycle('bgrcmk') for i in range(numcolors): cmaps = cmaps + [ LinearSegmentedColormap("fire", produce_cdict(next(cycol), grey=grey_level, min_alpha=min_alpha, max_alpha=max_alpha), N=256) ] else: for col in max_colors.split(','): col = col.strip() cmaps = cmaps + [ LinearSegmentedColormap("fire", produce_cdict(col, grey=grey_level, min_alpha=min_alpha, max_alpha=max_alpha), N=256) ] else: if max_colors == "": cmaps = cmaps + [LinearSegmentedColormap("fire", cdict, N=256)] else: for col in max_colors.split(','): col = col.strip() cmaps = cmaps + [ LinearSegmentedColormap("fire", produce_cdict(col, grey=grey_level, min_alpha=min_alpha, max_alpha=max_alpha), N=256) ] colorbar_height = 10 plot_height = 650 num_cbars = 1 if overlay_genes: num_cbars = len(gene_ids.split(',')) cbar_height_ratio = plot_height / (num_cbars * colorbar_height) fig, ax = plt.subplots( 1 + num_cbars, 1, gridspec_kw={'height_ratios': [cbar_height_ratio] + [1] * num_cbars}) gene_index = -1 for gene_id in gene_ids.split(','): gene_id = gene_id.strip() gene_index = gene_index + 1 if gene_id in df.index: if not overlay_genes: plt.clf() fig, ax = plt.subplots( 1 + num_cbars, 1, gridspec_kw={ 'height_ratios': [cbar_height_ratio] + [1] * num_cbars }) transposed_df = df.T mean = transposed_df[gene_id].mean() stdev = transposed_df[gene_id].std(ddof=0) if convert_to_zscore: scatter_df = pd.DataFrame( { "x": [a[0] for a in coords.values()], "y": [a[1] for a in coords.values()], "value": (df.loc[gene_id, :] - mean) / stdev }, index=coords.keys()) else: scatter_df = pd.DataFrame( { "x": [a[0] for a in coords.values()], "y": [a[1] for a in coords.values()], "value": df.loc[gene_id, :] }, index=coords.keys()) values_df = np.clip(scatter_df["value"], min_level, max_level, out=None) min_value = np.nanmin(values_df) max_value = np.nanmax(values_df) scaled_marker_size = (max_marker_area - min_marker_area) * ( values_df - min_value) / (max_value - min_value) + min_marker_area scaled_marker_size = scaled_marker_size * scaled_marker_size # s = 5000 / scatter_df.shape[0] scatter = ax[0].scatter( x=scatter_df["x"], y=scatter_df["y"], s=scaled_marker_size, c=values_df, cmap=cmaps[gene_index % len(cmaps)]) #Amp_3.mpl_colormap) cbar = fig.colorbar(scatter, cax=ax[1 + (gene_index % num_cbars)], orientation='horizontal', aspect=40) cbar.set_label(gene_id, rotation=0) ax[0].set_xlabel(dim_names[0]) ax[0].set_ylabel(dim_names[1]) if not overlay_genes: gn.add_current_figure_to_results( "Scatter-plot of {} expression".format(gene_id), dpi=75) else: # if the gene ID entered is not present in the assay # Communicate it to the user and output a table of available gene ID's description = 'The selected gene is not present in the assay. See the step that generated the assay' genes_in_assay = pd.DataFrame( df.index.tolist(), columns=['Gene unavailable in assay: choose from below']) gn.add_pandas_df(genes_in_assay, description) if overlay_genes: gn.add_current_figure_to_results( "Scatter-plot of {} expression".format(gene_ids), height=650 + 100 * len(gene_ids.split(',')), dpi=75) gn.commit()
def main(): gn = Granatum() df = gn.pandas_from_assay(gn.get_import('assay')) alpha = gn.get_arg('alpha') jammit = JAMMIT.from_dfs([df]) res = jammit.run_for_one_alpha( alpha, verbose=1, convergence_threshold=0.000000001, ) u = res['u'] v = res['v'] gn.export(dict(zip(df.index, u)), 'Genes loadings', kind='geneMeta') gn.export(dict(zip(df.columns, v)), 'Sample scores', kind='sampleMeta') gene_df = pd.DataFrame({ 'id_': df.index, 'abs_loading': abs(u), 'loading': u }) gene_df = gene_df[['id_', 'abs_loading', 'loading']] gene_df = gene_df.loc[gene_df['loading'].abs() > EPSILON] gene_df = gene_df.sort_values('abs_loading', ascending=False) gn.add_result( { 'title': f"Signal genes ({len(gene_df)})", 'orient': 'split', 'columns': gene_df.columns.values.tolist(), 'data': gene_df.values.tolist(), }, data_type='table', ) gn.export(gene_df.to_csv(index=False), 'signal_genes.csv', kind='raw', meta=None, raw=True) sample_df = pd.DataFrame({ 'id_': df.columns, 'abs_score': abs(v), 'score': v }) sample_df = sample_df[['id_', 'abs_score', 'score']] sample_df = sample_df.loc[sample_df['score'].abs() > EPSILON] sample_df = sample_df.sort_values('abs_score', ascending=False) gn.add_result( { 'title': f"Signal samples ({len(sample_df)})", 'orient': 'split', 'columns': sample_df.columns.values.tolist(), 'data': sample_df.values.tolist(), }, data_type='table', ) gn.export(sample_df.to_csv(index=False), 'signal_samples.csv', kind='raw', meta=None, raw=True) subset_df = df.loc[gene_df['id_'], sample_df['id_']] gn.export(gn.assay_from_pandas(subset_df), 'Assay with only signal genes and samples', kind='assay') sns.clustermap(subset_df, cmap='RdBu') gn.add_current_figure_to_results( description='Cluster map of the signal genes and signal samples', zoom=2, width=750, height=850, dpi=50, ) plt.close() plt.figure() plt.scatter(range(len(u)), u, s=2, c='red') plt.xlabel('index') plt.ylabel('value in u') gn.add_current_figure_to_results( description= 'The *u* vector (loadings for genes) plotted as a scatter plot.', zoom=2, width=750, height=450, dpi=50, ) plt.close() plt.figure() plt.plot(range(len(v)), v) plt.scatter(range(len(v)), v, s=6, c='red') plt.xlabel('index') plt.ylabel('value in v') gn.add_current_figure_to_results( description= 'The *v* vector (scores for samples) plotted as a line plot.', zoom=2, width=750, height=450, dpi=50, ) plt.close() # gn.export_current_figure( # 'cluster_map.pdf', # zoom=2, # width=750, # height=850, # dpi=50, # ) gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() sample_coords = gn.get_import("viz_data") value = gn.get_import("value") coloring_type = gn.get_arg("coloring_type") bounding_stdev = gn.get_arg("bounding_stdev") label_location = gn.get_arg("label_location") label_transform = gn.get_arg("label_transform") labelXaxis = gn.get_arg("labelXaxis") labelYaxis = gn.get_arg("labelYaxis") sigfigs = gn.get_arg("sigfigs") numticks = gn.get_arg("numticks") font = gn.get_arg('font') coords = sample_coords.get("coords") dim_names = sample_coords.get("dimNames") seed = gn.get_arg('random_seed') random.seed(seed) np.random.seed(seed) df = pd.DataFrame( { "x": [a[0] for a in coords.values()], "y": [a[1] for a in coords.values()], "value": pd.Series(value) }, index=coords.keys()) target_dpi = 300 target_width = 7.5 # inches target_height = 6.5 # inches font_size_in_in = font / 72.0 # inches font_size_in_px = font_size_in_in * target_dpi try: if coloring_type == "categorical": uniq = df["value"].unique() uniq.sort(kind="stable") num = uniq.shape[0] COLORS2 = plt.get_cmap('gist_rainbow') carr = [0] * df.shape[0] listcats = list(df["value"]) miny = min(list(df["y"])) maxy = max(list(df["y"])) scaley = (maxy - miny) / (target_height * target_dpi) print("Scaley = {}".format(scaley)) colorhash = {} colorstep = np.ceil(256.0 / num) coffset = randrange(colorstep) grouptocolor = np.random.choice(np.arange(num), num, replace=False) for i, cat in enumerate(uniq): dff = df[df["value"] == cat] xs = list(dff["x"]) ys = list(dff["y"]) #avgx = sum(dff["x"]) / len(dff["x"]) #avgy = sum(dff["y"]) / len(dff["y"]) #plt.scatter(x=dff["x"], y=dff["y"], s=5000 / df.shape[0], c=COLORS[i].hex_l, label=cat) #plt.scatter(x=dff["x"], y=dff["y"], s=5000 / df.shape[0], c=[abs(hash(cat)) % 256]*len(dff["x"]), cmap=COLORS2, label=cat) #plt.scatter(x=dff["x"], y=dff["y"], s=5000 / df.shape[0], c=abs(hash(cat)) % 256, cmap=COLORS2, label=cat) #abs(hash(cat)) colorindex = (coffset + grouptocolor[i] * colorstep) % 256 colorhash[cat] = colorindex craw = COLORS2((colorindex + 0.0) / 256.0) clr = [craw[0], craw[1], craw[2], 0.2] whitetransparent = [1.0, 1.0, 1.0, 0.5] coloropaque = [craw[0], craw[1], craw[2], 1.0] if len(xs) > 3: pts = list(zip(xs, ys)) cent = np.mean(pts, axis=0) lengs = list( map( lambda p: math.sqrt( (p[0] - cent[0]) * (p[0] - cent[0]) + (p[1] - cent[1]) * (p[1] - cent[1])), pts)) avgleng = st.mean(lengs) stdleng = st.stdev(lengs) * bounding_stdev rpts = [] if (stdleng > 0.0): for j, ln in enumerate(lengs): if (ln - avgleng < stdleng): rpts.append(pts[j]) pts = rpts cent = np.mean(pts, axis=0) hull = ConvexHull(pts) ptslist = [] for pt in hull.simplices: ptslist.append(pts[pt[0]]) ptslist.append(pts[pt[1]]) ptslist.sort(key=lambda p: np.arctan2( p[1] - cent[1], p[0] - cent[0])) ptslist = ptslist[0::2] ptslist.insert(len(ptslist), ptslist[0]) lowestpt = ptslist[0] if label_location == 'bottom': for pt in ptslist: if (pt[1] < lowestpt[1]): lowestpt = pt else: lowestpt = ptslist[randrange(len(ptslist))] if (bounding_stdev >= 0.0): poly = Polygon(1.1 * (np.array(ptslist) - cent) + cent, facecolor=clr) poly.set_capstyle('round') plt.gca().add_patch(poly) poly.set_color(clr) label_text = cat if label_transform == "numbers": label_text = re.sub("[^0-9]", "", cat) txt = plt.text(lowestpt[0], lowestpt[1] - scaley * font_size_in_px * 1.2, label_text, fontsize=font, fontname="Arial", ha="center", va="center", color="black", bbox=dict(boxstyle="round", fc=whitetransparent, ec=coloropaque)) # plt.gca().add_artist(txt) for j, x in enumerate(listcats): if x == cat: carr[j] = colorhash[cat] #carr[j] = colorhash[cat] / 256.0 #int(abs(hash(cat)) % 256) plt.scatter(x=df["x"], y=df["y"], s=5000 / df.shape[0], c=carr, cmap=COLORS2) lgd = plt.legend(markerscale=6, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=5) #60 / (5000 / df.shape[0]) elif coloring_type == "continuous": plt.scatter(x=df["x"], y=df["y"], s=5000 / df.shape[0], c=df["value"], cmap="Reds") plt.colorbar() xmin, xmax = plt.gca().get_xlim() ymin, ymax = plt.gca().get_ylim() # stepsizex=(xmax-xmin)/numticks # stepsizey=(ymax-ymin)/numticks xtickArray = resetArray(xmin, xmax, numticks, sigfigs) ytickArray = resetArray(ymin, ymax, numticks, sigfigs) # plt.xticks(np.arange(xmin, xmax+stepsizex, step=stepsizex), fontsize=font, fontname="Arial") # plt.yticks(np.arange(ymin, ymax+stepsizey, step=stepsizey), fontsize=font, fontname="Arial") plt.xlim(xtickArray[0], xtickArray[-1]) plt.ylim(ytickArray[0], ytickArray[-1]) plt.xticks(xtickArray, fontsize=font, fontname="Arial") plt.yticks(ytickArray, fontsize=font, fontname="Arial") if labelXaxis == "": plt.xlabel(dim_names[0], fontsize=font, fontname="Arial") else: plt.xlabel(labelXaxis, fontsize=font, fontname="Arial") if labelYaxis == "": plt.ylabel(dim_names[1], fontsize=font, fontname="Arial") else: plt.ylabel(labelYaxis, fontsize=font, fontname="Arial") # plt.tight_layout() gn.add_current_figure_to_results( "Scatter-plot", dpi=target_dpi, width=target_width * target_dpi, height=target_height * target_dpi, savefig_kwargs={'bbox_inches': 'tight'}) toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished sample coloring step in {} seconds*".format( time_passed) gn.add_result(timing, "markdown") gn.commit() except Exception as e: plt.figure() plt.text( 0.05, 0.7, 'Values used as colors and type of sample metadata are incompatible with each other' ) if coloring_type == 'categorical': new_coloring_type = 'continuous' else: new_coloring_type = 'categorical' plt.text( 0.05, 0.5, 'Retry the step with ' + new_coloring_type + ' instead of ' + coloring_type) plt.axis('off') gn.add_current_figure_to_results('Scatter-plot') gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() assay = gn.get_import('assay') sample_ids = assay.get('sampleIds') group_dict = gn.get_import('groupVec') group_vec = pd.Categorical([group_dict.get(x) for x in sample_ids]) num_groups = len(group_vec.categories) figheight = 400 * (math.floor((num_groups - 1) / 7) + 1) adata = sc.AnnData(np.array(assay.get('matrix')).transpose()) adata.var_names = assay.get('geneIds') adata.obs_names = assay.get('sampleIds') adata.obs['groupVec'] = group_vec sc.pp.neighbors(adata, n_neighbors=20, use_rep='X', method='gauss') try: sc.tl.rank_genes_groups(adata, 'groupVec', n_genes=100000) sc.pl.rank_genes_groups(adata, n_genes=20) gn.add_current_figure_to_results('One-vs-rest marker genes', dpi=75, height=figheight) gn._pickle(adata, 'adata') rg_res = adata.uns['rank_genes_groups'] for group in rg_res['names'].dtype.names: genes_names = [str(x[group]) for x in rg_res['names']] scores = [float(x[group]) for x in rg_res['scores']] newdict = dict(zip(genes_names, scores)) gn.export(newdict, 'Marker score ({} vs. rest)'.format(group), kind='geneMeta') newdictstr = [ '"' + str(k) + '"' + ", " + str(v) for k, v in newdict.items() ] gn.export("\n".join(newdictstr), 'Marker score {} vs rest.csv'.format(group), kind='raw', meta=None, raw=True) # cluster_assignment = dict(zip(adata.obs_names, adata.obs['louvain'].values.tolist())) # gn.export_statically(cluster_assignment, 'cluster_assignment') toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished marker gene identification step in {} seconds*".format( time_passed) gn.add_result(timing, "markdown") gn.commit() except Exception as e: plt.figure() plt.text(0.01, 0.5, 'Incompatible group vector due to insufficent cells') plt.text(0.01, 0.3, 'Please retry the step with a different group vector') plt.axis('off') gn.add_current_figure_to_results('One-vs-rest marker genes') gn.add_result('Error = {}'.format(e), "markdown") gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() assay_file = gn.get_uploaded_file_path("assayFile") sample_meta_file = gn.get_uploaded_file_path("sampleMetaFile") file_format = gn.get_arg("fileFormat") file_format_meta = gn.get_arg("fileFormatMeta") species = gn.get_arg("species") # Share the email address among other gboxes using a pickle dump # email_address = gn.get_arg("email_address") shared = {"email_address": email_address} with open(gn.swd + "/shared.pkl", "wb") as fp: pickle.dump(shared, fp) if file_format == "und": file_format = Path(assay_file).suffix[1:] if file_format == "csv": tb = pd.read_csv(assay_file, sep=",", index_col=0, engine='c', memory_map=True) elif file_format == "tsv": tb = pd.read_csv(assay_file, sep="\t", index_col=0, engine='c', memory_map=True) elif file_format.startswith("xls"): tb = pd.read_excel(assay_file, index_col=0) elif file_format == "zip": os.system("zip -d {} __MACOSX/\\*".format(assay_file)) os.system("unzip -p {} > {}.csv".format(assay_file, assay_file)) tb = pd.read_csv("{}.csv".format(assay_file), sep=",", index_col=0, engine='c', memory_map=True) elif file_format == "gz": os.system("gunzip -c {} > {}.csv".format(assay_file, assay_file)) tb = pd.read_csv("{}.csv".format(assay_file), sep=",", index_col=0, engine='c', memory_map=True) else: gn.error("Unknown file format: {}".format(file_format)) sample_ids = tb.columns.values.tolist() gene_ids = tb.index.values.tolist() gene_id_type = guess_gene_id_type(gene_ids[:5]) whether_convert_id = gn.get_arg("whether_convert_id") if whether_convert_id: to_id_type = gn.get_arg("to_id_type") add_info = gn.get_arg("add_info") # if there are duplicated ids, pick the first row # TODO: Need to have a more sophisticated handling of duplicated ids gene_ids, new_meta = convert_gene_ids(gene_ids, gene_id_type, to_id_type, species, return_new_meta=True) # TODO: remove NaN rows # TODO: combine duplicated rows if add_info: for col_name, col in new_meta.iteritems(): gn.export(col.to_dict(), col_name, "geneMeta") assay_export_name = "[A]{}".format(basename(assay_file)) exported_assay = { "matrix": tb.values.tolist(), "sampleIds": sample_ids, "geneIds": gene_ids, } gn.export(exported_assay, assay_export_name, "assay") entry_preview = '\n'.join( [', '.join(x) for x in tb.values[:10, :10].astype(str).tolist()]) gn.add_result( f"""\ The assay has **{tb.shape[0]}** genes (with inferred ID type: {biomart_col_dict[gene_id_type]}) and **{tb.shape[1]}** samples. The first few rows and columns: ``` {entry_preview} ``` """, "markdown", ) meta_rows = [] if sample_meta_file is not None: if file_format_meta == "und": file_format_meta = Path(sample_meta_file).suffix[1:] if file_format_meta == "csv": sample_meta_tb = pd.read_csv(sample_meta_file) elif file_format_meta == "tsv": sample_meta_tb = pd.read_csv(sample_meta_file, sep="\t") elif file_format_meta.startswith("xls"): sample_meta_tb = pd.read_excel(sample_meta_file) elif file_format_meta == "zip": os.system("unzip -p {} > {}.csv".format(sample_meta_file, sample_meta_file)) sample_meta_tb = pd.read_csv("{}.csv".format(sample_meta_file)) elif file_format_meta == "gz": os.system("gunzip -c {} > {}.csv".format(sample_meta_file, sample_meta_file)) sample_meta_tb = pd.read_csv("{}.csv".format(sample_meta_file)) else: gn.error("Unknown file format: {}".format(file_format)) for meta_name in sample_meta_tb.columns: meta_output_name = "[M]{}".format(meta_name) sample_meta_dict = dict( zip(sample_ids, sample_meta_tb[meta_name].values.tolist())) gn.export(sample_meta_dict, meta_output_name, "sampleMeta") num_sample_values = 5 sample_values = ", ".join(sample_meta_tb[meta_name].astype( str).values[0:num_sample_values].tolist()) num_omitted_values = len( sample_meta_tb[meta_name]) - num_sample_values if num_omitted_values > 0: etc = ", ... and {} more entries".format(num_omitted_values) else: etc = "" meta_rows.append({ 'meta_name': meta_name, 'sample_values': str(sample_values) + etc, }) # meta_message = '\n'.join( # "* Sample meta with name **{meta_name}** is accepted ({sample_values}).".format(**x) for x in meta_rows # ) # gn.add_result(meta_message, "markdown") # gn.add_result({'columns': []}, 'table') # TODO: SAVE assay pickle toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished upload step in {} seconds*".format(time_passed) gn.add_result(timing, "markdown") gn.commit()
def main(): tic = time.perf_counter() gn = Granatum() assay = gn.pandas_from_assay(gn.get_import('assay')) groups = gn.get_import('groups') min_zscore = gn.get_arg('min_zscore') max_zscore = gn.get_arg('max_zscore') min_expression_variation = gn.get_arg('min_expression_variation') inv_map = {} for k, v in groups.items(): inv_map[v] = inv_map.get(v, []) + [k] low_mean_dfs = [] high_mean_dfs = [] mean_dfs = [] std_dfs = [] colnames = [] for k, v in inv_map.items(): group_values = assay.loc[:, v] lowbound_clust = {} highbound_clust = {} for index, row in group_values.iterrows(): meanbounds = sms.DescrStatsW(row).tconfint_mean() lowbound_clust[index] = meanbounds[0] highbound_clust[index] = meanbounds[1] low_mean_dfs.append(pd.DataFrame.from_dict(lowbound_clust, orient="index", columns=[k])) high_mean_dfs.append(pd.DataFrame.from_dict(highbound_clust, orient="index", columns=[k])) mean_dfs.append(group_values.mean(axis=1)) std_dfs.append(group_values.std(axis=1)) colnames.append(k) mean_df = pd.concat(mean_dfs, axis=1) mean_df.columns = colnames low_mean_df = pd.concat(low_mean_dfs, axis=1) low_mean_df.columns = colnames high_mean_df = pd.concat(high_mean_dfs, axis=1) high_mean_df.columns = colnames std_df = pd.concat(std_dfs, axis=1) std_df.columns = colnames print(std_df) minvalues = std_df.min(axis=1).to_frame() minvalues.columns=["min"] print("Minvalues>>") print(minvalues, flush=True) genes_below_min = list((minvalues[minvalues["min"]<min_expression_variation]).index) print("{} out of {}".format(len(genes_below_min), len(minvalues.index)), flush=True) mean_df = mean_df.drop(genes_below_min, axis=0) low_mean_df = low_mean_df.drop(genes_below_min, axis=0) high_mean_df = high_mean_df.drop(genes_below_min, axis=0) std_df = std_df.drop(genes_below_min, axis=0) assay = assay.drop(genes_below_min, axis=0) print("Filtered assay to get {} columns by {} rows".format(len(assay.columns), len(assay.index)), flush=True) mean_rest_dfs = [] std_rest_dfs = [] colnames = [] for k, v in inv_map.items(): rest_v = list(set(list(assay.columns)).difference(set(v))) mean_rest_dfs.append(assay.loc[:, rest_v].mean(axis=1)) std_rest_dfs.append(assay.loc[:, rest_v].std(axis=1)) colnames.append(k) mean_rest_df = pd.concat(mean_rest_dfs, axis=1) mean_rest_df.columns = colnames std_rest_df = pd.concat(std_rest_dfs, axis=1) std_rest_df.columns = colnames zscore_dfs = [] cols = colnames colnames = [] for coli in cols: for colj in cols: if coli != colj: # Here we should check significance # Fetch most realistic mean comparison set, what is smallest difference between two ranges mean_diff_overlap_low_high = (low_mean_df[coli]-high_mean_df[colj]) mean_diff_overlap_high_low = (high_mean_df[coli]-low_mean_df[colj]) diff_df = mean_diff_overlap_low_high.combine(mean_diff_overlap_high_low, range_check) zscore_dfs.append((diff_df/(std_df[colj]+std_df[coli]/4)).fillna(0).clip(-max_zscore, max_zscore)) colnames.append("{} vs {}".format(coli, colj)) for coli in cols: zscore_dfs.append(((mean_df[coli]-mean_rest_df[colj])/(std_rest_df[colj]+std_rest_df[coli]/4)).fillna(0).clip(-max_zscore, max_zscore)) colnames.append("{} vs rest".format(coli)) zscore_df = pd.concat(zscore_dfs, axis=1) zscore_df.columns = colnames norms_df = zscore_df.apply(np.linalg.norm, axis=1) colsmatching = norms_df.T[(norms_df.T >= min_zscore)].index.values return_df = zscore_df.T[colsmatching] gn.export_statically(gn.assay_from_pandas(return_df), 'Differential expression sets') gn.export(return_df.T.to_csv(), 'differential_gene_sets.csv', kind='raw', meta=None, raw=True) toc = time.perf_counter() time_passed = round(toc - tic, 2) timing = "* Finished differential expression sets step in {} seconds*".format(time_passed) gn.add_result(timing, "markdown") gn.commit()