def graphFromCombinations(combinations): resultingCombinations = [] for comb in combinations: maxSumm = 0 for v in comb: summ = 0 for k in v: val = k.split('-') summ = summ+int(val[1]) if summ > maxSumm: maxSumm = summ igraph = generateGraph([comb], False) resultingCombinations.append(igraph) return resultingCombinations
def __init__(self, type, num_nodes, num_classes=3472, graph_type="WS", num_neighbors=4, probability=0.5): super(Network, self).__init__() self.start = keras.layers.DepthwiseConv2D(3, strides=2) self.batch = keras.layers.BatchNormalization() if type == "small": self.stage_start = TripletBlock(strides=2) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage = Stage(graph) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage2 = Stage(graph) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage3 = Stage(graph) self.relu = keras.layers.ReLU() self.conv = keras.layers.Conv2D(109 * 4, 1) self.batch2 = keras.layers.BatchNormalization() elif type == "normal": graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage_start = Stage(graph) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage = Stage(graph) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage2 = Stage(graph) graph = generator.generateGraph(graph_type, num_nodes, num_neighbors, probability) generator.drawGraph(graph) self.stage3 = Stage(graph) self.relu = keras.layers.ReLU() self.conv = keras.layers.Conv2D(109 * 4, 1) self.batch2 = keras.layers.BatchNormalization() self.avrg = keras.layers.AveragePooling2D(7, 1) self.end = keras.layers.Dense(num_classes)
def menu(option, mazematrix): maze = graph.generateGraph(mazematrix, mazeWidth, mazeHeight) if option > 6 or option < 1: print "Incorrect parameter: \n1 <= Option <= 4" sys.exit(2) elif option == 1: DFS(maze, mazematrix) elif option == 2: BFS(maze, mazematrix) elif option == 3: greedy(maze, mazematrix) elif option == 4: aStar(maze, mazematrix) elif option == 5: pacmanv1(maze, mazematrix, dots) elif option == 6: pacmanv2(maze, mazematrix, dots)
def simulatedAnnealingAlgorithm(cell, pml_layers): plotArray, plotScore, plotTesting, scoreArray = graph.generateGraph( np.zeros((grid.xPixels, grid.yPixels)), initialScore=np.zeros(100)) testingWavelengths = wavelengthsInNMToTest() testingFrequencies = [ wavelengthInNMToFrequency(x) for x in testingWavelengths ] print(arrayStorage.numberOfEntriesInDatabase()) if (arrayStorage.numberOfEntriesInDatabase() == 0): #generate a random solution photonicGrid = initializePhotonicGrid() #calculate cost using cost function initialcost = calculateCost(cell, photonicGrid, pml_layers) arrayStorage.addNumpyArray(photonicGrid, initialcost) temperature = simulation.initialTemperature while temperature > simulation.finalTemperatureCutoff: #generate a random neighboring solution currentBestArray = arrayStorage.returnMostRecentNumpyArray() if (temperature % 10 == 0): currentBestArray = randomPhotonicGrid() x = np.random.randint(0, grid.xPixels) y = np.random.randint(0, grid.yPixels) if (currentBestArray[x, y] == 0): testArray = currentBestArray testArray[x, y] = 1 elif (currentBestArray[x, y] == 1): testArray = currentBestArray testArray[x, y] = 0 else: print("Error occured, array element was not 0 or 1") graph.update_testing_plot(plotTesting, testArray) testCost = calculateCost(cell, testArray, pml_layers) print("The test cost is ", testCost) #compare if (testCost > arrayStorage.returnBestCost()): arrayStorage.addNumpyArray(testArray, testCost) graph.update_plot(plotArray, testArray) graph.update_score(plotScore, testCost, scoreArray)
def get_grid_graph(n): ''' Construct a grid graph using graph.py ''' nodes = gm.generateGraph(n, int(math.sqrt(n)) + 4, int(math.sqrt(n)) + 4, CONNECTIVITY) return convert_graph(gm.get_graph_representation(nodes))
from dbpedia import strictQueryInfluencedBy, queryInfluencedAndInfluencedBy, queryInfluencedAndInfluencedByFor from graph import generateGraph, saveToFile from graphviz import Digraph #Non-strict influenced and influencedBy result = queryInfluencedAndInfluencedBy() dot = generateGraph(result, Digraph(filename="../output/programming", format="svg")) saveToFile(dot) #Strict influenced and influencedBy result = strictQueryInfluencedBy() dot = generateGraph( result, Digraph(filename="../output/programming-strict", format="svg")) saveToFile(dot) #Influenced and influencedBy for the programmming language Java result = queryInfluencedAndInfluencedByFor("Java (programming language)") dot = generateGraph(result, Digraph(filename="../output/java", format="svg")) saveToFile(dot)
for (i,arg) in enumerate(sys.argv): if arg == '-d': deb = True elif arg == '-g': graph = True elif arg == '-i': manualIn = True elif arg == '-o': manualOut = True elif i != 0: read(sys.argv[i]) # testuru = list(raw_input("kk:").upper()) if manualIn == True: input = manualInputOutput("input:") if manualOut == True: output = manualInputOutput("output:") init_factsValue(facts, input) init_factsRules(facts, rules) if deb == True: debug() if graph == True: generateGraph(facts, input, output) for res in output: print "" + res + " -> " + str( facts[res].searchValue( facts ) )
import graph as gr import networkx as nx esquizofrenia = "fechou as 5 empresas e então a geração de renda e as pessoas que moravam lá eu conheço bem porque eu cresci lá são muito pequenas, são pequenas de personalidade." control = "aí eu disse pra menina que estava comigo, eu estou vendo tudo pela metade, ela disse oxente, eu disse é... ela me deu a agenda pra eu ligar pro pessoal que ligou pra mim." esquizofrenia = gr.prepare(esquizofrenia) control = gr.prepare(control) Esquigraph = gr.generateGraph(esquizofrenia) Controlgraph = gr.generateGraph(control) file = open("graph_visualization.txt", 'w') nodes = [] for i in Esquigraph.edges: string1 = "" string2 = "" node1 = i[0] node2 = i[1] if not (node1 in nodes): nodes.append(node1) string1 = str(nodes.index(node1) + 1) if not (node2 in nodes): nodes.append(node2) string2 = str(nodes.index(node2) + 1) file.write(string1 + "-" + string2 + ",") file.write(str(len(Esquigraph.edges)) + "\n") nodes = []
def main(): datadict = io_ply.read_ply(sys.argv[1]) original_data = io_ply.read_ply(sys.argv[2]) generateGraph(datadict, original_data)