def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = contrib_framework.get_or_create_global_step() # Get images and labels for CIFAR-10. images, labels = cifar10.distorted_inputs() # Create a compression object using the compression hyperparameters compression_obj = cifar10.create_compressor(FLAGS.compression_hparams, global_step=global_step) # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images, compression_obj) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step, compression_obj) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 def before_run(self, run_context): self._step += 1 self._start_time = time.time() return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): duration = time.time() - self._start_time loss_value = run_values.results if self._step % 10 == 0: num_examples_per_step = 128 examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[ tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook() ], config=tf.ConfigProto(log_device_placement=FLAGS. log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def eval_once(): """Run Eval once.""" with tf.Graph().as_default() as g: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if not (ckpt and ckpt.model_checkpoint_path): print('No checkpoint file found') return # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = cifar10.inputs(eval_data=eval_data) global_step = FLAGS.global_step # If invalid global step or none provided, use the last global step # recorded in the checkpoint file. if not global_step or global_step < 0: # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] compression_obj = cifar10.create_compressor( FLAGS.compression_hparams, global_step=global_step) # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images, compression_obj) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) num_iter = int(math.ceil(FLAGS.num_examples / 128)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * 128 step = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) true_count += np.sum(predictions) step += 1 # Compute precision @ 1. precision = true_count / total_sample_count print('%s: precision @ 1 = %.3f' % (datetime.datetime.now(), precision)) summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)