def main(args): data = load_data(args) g = data.graph if isinstance(g, dgl.DGLGraph): csr = g.adjacency_matrix_scipy(transpose=True) else: csr = nx.to_scipy_sparse_matrix(g, weight=None, format='csr') graph_io.save_graph(args.out, csr)
def main(args): if args.dataset == 'segtree': g = build_segtree(batch_size=32, seq_len=512) print('#Nodes: %d #Edges: %d' % (g.number_of_nodes(), g.number_of_edges())) csr = g.adjacency_matrix_scipy(fmt='csr') else: data = load_data(args) g = data.graph csr = nx.to_scipy_sparse_matrix(g, weight=None, format='csr') graph_io.save_graph(args.out, csr)
def main(args): if args.dataset == 'segtree': g = build_segtree(batch_size=32, seq_len=512) print('#Nodes: %d #Edges: %d' % (g.number_of_nodes(), g.number_of_edges())) csr = g.adjacency_matrix_scipy(fmt='csr') n, m = 32 * 512, 32 * 512 else: data = load_data(args) g = data.graph if isinstance(g, dgl.DGLGraph): csr = g.adjacency_matrix_scipy(transpose=True) else: csr = nx.to_scipy_sparse_matrix(g, weight=None, format='csr') n, m = csr.indptr.shape[0] - 1, csr.indptr.shape[0] - 1 graph_io.save_graph(args.out, csr, n, m)
def compare_modules(m_g0, g_m0, m_g1, g_m1, g0, g1): """ currently saves two images of the biggest module for graph0 and graph1. """ print 'calling compare_modules' top10_0 = get_top_n_modules(m_g0, 10) top10_1 = get_top_n_modules(m_g1, 10) top_module_genes0 = list(m_g0[top10_0[0]]) top_module_genes1 = list(m_g1[top10_1[0]]) H0 = g0.subgraph(top_module_genes0) H1 = g1.subgraph(top_module_genes1) print top_module_genes0 print top_module_genes1 print top_module_genes0 == top_module_genes1 print 'saving the two biggest modoles' #todo get this to display the same graph, since edgelist is the same? graph_io.save_graph(H0, '../results/Merlin/h0.png') graph_io.save_graph(H1, '../results/Merlin/h1.png')
def gen_er(args): g = nx.fast_gnp_random_graph(args.er_n, args.er_p) csr = nx.to_scipy_sparse_matrix(g, weight=None, format='csr') graph_io.save_graph(args.out, csr, args.er_n, args.er_n)
def gen_ba(args): g = nx.barabasi_albert_graph(args.ba_n, args.ba_m) csr = nx.to_scipy_sparse_matrix(g, weight=None, format='csr') graph_io.save_graph(args.out, csr, args.er_n, args.er_n)