def hyperparameters(self): '''A hierarchical representation of all the kernel hyperparameters.''' return pretty_tuple('MarginalizedGraphKernel', [ 'starting_probability', 'stopping_probability', 'node_kernel', 'edge_kernel' ])(self.p.theta, self.q, self.node_kernel.theta, self.edge_kernel.theta)
def hyperparameter_bounds(self): return pretty_tuple( 'Exponentiation', ['xi', 'kernel'] )( self.xi_bounds, self.kernel.hyperparameter_bounds )
def hyperparameter_bounds(self): if self.s_bounds == "fixed": return self.kernel.hyperparameter_bounds else: return pretty_tuple('GraphKernelHyperparameterBounds', [ 'starting_probability', 'stopping_probability', 'node_kernel', 'edge_kernel', 'normalize_size' ])(self.kernel.p.bounds, self.kernel.q_bounds, self.kernel.node_kernel.bounds, self.kernel.edge_kernel.bounds, self.s_bounds)
def hyperparameters(self): if self.s_bounds == "fixed": return self.kernel.hyperparameters else: return pretty_tuple('MarginalizedGraphKernel', [ 'starting_probability', 'stopping_probability', 'node_kernel', 'edge_kernel', 'normalize_size' ])(self.kernel.p.theta, self.kernel.q, self.kernel.node_kernel.theta, self.kernel.edge_kernel.theta, np.log(self.s))
def theta(self): return pretty_tuple(self.name, ['h'])(self.h)
def theta(self): return pretty_tuple( self.name, self._theta_values.keys() )(**self._theta_values)
def theta(self): return pretty_tuple(self.name, ['lhs', 'rhs'])( self.k1.theta, self.k2.theta )
def theta(self): return pretty_tuple(self.name, self.kw_kernels.keys())( *[k.theta for k in self.kw_kernels.values()])
def bounds(self): return pretty_tuple(self.name, self.kw_kernels.keys())( *[k.bounds for k in self.kw_kernels.values()])
def hyperparameter_bounds(self): return pretty_tuple('GraphKernelHyperparameterBounds', [ 'starting_probability', 'stopping_probability', 'node_kernel', 'edge_kernel' ])(self.p.bounds, self.q_bounds, self.node_kernel.bounds, self.edge_kernel.bounds)
def hyperparameters(self): return pretty_tuple('Kernel', ['v', 'L'])(self.v, self.L)
def theta(self): return pretty_tuple(self.name, ['base'])(self.kernel.theta)
def hyperparameters(self): return pretty_tuple('RBFKernel', list(self._hyperparams.keys()) + ['distance'])(*self._hyperparams.values(), self.distance.hyperparameters)
def theta(self): return pretty_tuple('Uniform', ['p'])(self.p)