def do_training(self,epochs=100,test_interval=None): graph.start_interactive_mode() errors = [] if test_interval: self.avg_vector_distances = [] for i in range(epochs): error = 0 for c in self.cases: error += self.trainer(c) errors.append(error) if test_interval: self.consider_interim_test(i,test_interval) graph.simple_plot(errors,xtitle="Epoch",ytitle="Error",title="") if test_interval: graph.newfig() graph.simple_plot(self.avg_vector_distances,xtitle='Epoch', ytitle='Avg Hidden-Node Vector Distance',title='')
def autotest(nb=3,nh=2,lr=.1,epochs=100,ti=10): ac = autoencoder(nb,nh,lr) graph.newfig() ac.do_training(epochs,test_interval=ti) graph.newfig() return ac.do_testing()