示例#1
0
    def data_step(self,
                  adj_transform="normalize_adj",
                  attr_transform=None,
                  K=35,
                  re_decompose=False):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        if re_decompose or not "U" in self.cache:
            V, U = sp.linalg.eigs(adj_matrix.astype('float64'), k=K)
            U, V = U.real, V.real
        else:
            U, V = self.cache.U, self.cache.V

        adj_matrix = (U * V) @ U.T
        adj_matrix = gf.get(adj_transform)(adj_matrix)

        X, A, U, V = gf.astensors(node_attr,
                                  adj_matrix,
                                  U,
                                  V,
                                  device=self.data_device)
        # ``A`` , ``X`` , U`` and ``V`` are cached for later use
        self.register_cache(X=X, A=A, U=U, V=V)
示例#2
0
    def make_data(self, graph, graph_transform=None, device=None, **kwargs):
        """This method is used for process your inputs, which accepts
        only keyword arguments in your defined method 'data_step'.
        This method will process the inputs, and transform them into tensors.

        Commonly used keyword arguments:
        --------------------------------
        graph: graphgallery graph classes.
        graph_transform: string, Callable function,
            or a tuple with function and dict arguments.
            transform for the entire graph, it is used first.
        device: device for preparing data, if None, it defaults to `self.device`
        adj_transform: string, Callable function,
            or a tuple with function and dict arguments.
            transform for adjacency matrix.
        attr_transform: string, Callable function,
            or a tuple with function and dict arguments.
            transform for attribute matrix.
        other arguments (if have) will be passed into method 'data_step'.
        """
        self.graph = gf.get(graph_transform)(graph)
        cfg = self.cfg.data
        if device is not None:
            self.data_device = gf.device(device, self.backend)
        else:
            self.data_device = self.device
        cfg.device = device
        _, kwargs = gf.wrapper(self.data_step)(**kwargs)
        kwargs['graph_transform'] = graph_transform
        cfg.merge_from_dict(kwargs)

        for k, v in kwargs.items():
            if k.endswith("transform"):
                setattr(self.transform, k, gf.get(v))
        return self
示例#3
0
    def process_step(self,
                     adj_transform="normalize_adj",
                     attr_transform=None,
                     graph_transform=None,
                     recalculate=True):

        graph = gf.get(graph_transform)(self.graph)
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)

        if recalculate:
            # Uses this to save time for structure evation attack
            # NOTE: Please make sure the node attribute matrix remains the same if recalculate=False
            knn_graph = gf.normalize_adj(gf.knn_graph(node_attr),
                                         fill_weight=0.)
            pseudo_labels, node_pairs = gf.attr_sim(node_attr)
            knn_graph, pseudo_labels = gf.astensors(knn_graph,
                                                    pseudo_labels,
                                                    device=self.device)

            self.register_cache(knn_graph=knn_graph,
                                pseudo_labels=pseudo_labels,
                                node_pairs=node_pairs)
示例#4
0
    def process_step(self,
                     adj_transform="normalize_adj",
                     attr_transform=None,
                     graph_transform=None,
                     K=2):

        graph = gf.get(graph_transform)(self.graph)
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.device)

        # To avoid this tensorflow error in large dataset:
        # InvalidArgumentError: Cannot use GPU when output.shape[1] * nnz(a) > 2^31 [Op:SparseTensorDenseMatMul]
        if X.shape[1] * adj_matrix.nnz > 2**31:
            device = "CPU"
        else:
            device = self.device

        with tf.device(device):
            X = SGConvolution(K=K)([X, A])

        with tf.device(self.device):
            # ``A`` and ``X`` are cached for later use
            self.register_cache(X=X, A=A)
示例#5
0
    def data_step(self, adj_transform="add_selfloops", attr_transform=None):
        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)
        X, G = gf.astensors(node_attr, adj_matrix, device=self.data_device)

        # ``G`` and ``X`` are cached for later use
        self.register_cache(X=X, G=G)
示例#6
0
    def __init__(self,
                 *graph,
                 n_clusters=None,
                 adj_transform="normalize_adj",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a Cluster Graph Convolutional Networks (ClusterGCN) model.

        This can be instantiated in several ways:

            model = ClusterGCN(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = ClusterGCN(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node 
                 attributes, `labels` is a 1D Numpy array denoting the node labels.


        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        n_clusters: integer. optional
            The number of clusters that the graph being seperated, 
            if not specified (`None`), it will be set to the number 
            of classes automatically. (default :obj: `None`).            
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'normalize_adj'` with normalize rate `-0.5`.
            i.e., math:: \hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) 
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        device: string. optional 
            The device where the model is running on. You can specified `CPU` or `GPU` 
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional 
            Used in combination with `tf.random.set_seed` & `np.random.seed` 
            & `random.seed` to create a reproducible sequence of tensors across 
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.
        """
        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        if not n_clusters:
            n_clusters = self.graph.num_node_classes

        self.n_clusters = n_clusters
        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.process()
示例#7
0
    def __init__(self,
                 *graph,
                 batch_size=256,
                 rank=100,
                 adj_transform="normalize_adj",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a Fast Graph Convolutional Networks (FastGCN) model.


        This can be instantiated in several ways:

            model = FastGCN(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = FastGCN(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node 
                 attributes, `labels` is a 1D Numpy array denoting the node labels.

        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        batch_size (Positive integer, optional):
            Batch size for the training nodes. (default :int: `256`)
        rank (Positive integer, optional):
            The selected nodes for each batch nodes, `rank` must be smaller than
            `batch_size`. (default :int: `100`)
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'normalize_adj'` with normalize rate `-0.5`.
            i.e., math:: \hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) 
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        device: string. optional
            The device where the model is running on. You can specified `CPU` or `GPU`
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional 
            Used in combination with `tf.random.set_seed` & `np.random.seed` 
            & `random.seed` to create a reproducible sequence of tensors across 
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.
        """
        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.rank = rank
        self.batch_size = batch_size
        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.process()
示例#8
0
    def __init__(self,
                 *graph,
                 adj_transform="normalize_adj",
                 attr_transform=None,
                 k=35,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a Graph Convolutional Networks (GCN) model
            using Spetral Adversarial Training (SAT) defense strategy.


        This can be instantiated in several ways:

            model = SAT(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = SAT(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node 
                 attributes, `labels` is a 1D Numpy array denoting the node labels.


        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'normalize_adj'` with normalize rate `-0.5`.
            i.e., math:: \hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) 
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        k: integer. optional.
            The number of eigenvalues and eigenvectors desired.
            `k` must be smaller than N-1. It is not possible to compute all
            eigenvectors of an adjacency matrix.
        device: string. optional 
            The device where the model is running on. You can specified `CPU` or `GPU` 
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional 
            Used in combination with `tf.random.set_seed` & `np.random.seed` 
            & `random.seed` to create a reproducible sequence of tensors across 
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.
        """

        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.k = k
        self.process()
示例#9
0
    def process_step(self, attr_transform=None, graph_transform=None):

        graph = gf.get(graph_transform)(self.graph)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X = gf.astensors(node_attr, device=self.device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X)
示例#10
0
    def __init__(self,
                 *graph,
                 n_samples=(15, 5),
                 adj_transform="neighbor_sampler",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a SAmple and aggreGatE Graph Convolutional Networks (GraphSAGE) model.

        This can be instantiated in several ways:

            model = GraphSAGE(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = GraphSAGE(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node 
                 attributes, `labels` is a 1D Numpy array denoting the node labels.


        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        n_samples: List of positive integer. optional
            The number of sampled neighbors for each nodes in each layer. 
            (default :obj: `(15, 5)`, i.e., sample `15` first-order neighbors and 
            `5` sencond-order neighbors, and the radius for `GraphSAGE` is `2`)
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'neighbor_sampler'`) 
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        device: string. optional 
            The device where the model is running on. You can specified `CPU` or `GPU` 
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional 
            Used in combination with `tf.random.set_seed` & `np.random.seed` 
            & `random.seed` to create a reproducible sequence of tensors across 
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.

        """

        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.n_samples = n_samples
        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.process()
示例#11
0
def cache_transform(transform_kwargs):
    graph_transform = gf.get(transform_kwargs.pop("graph_transform", None))
    adj_transform = gf.get(transform_kwargs.pop("adj_transform", None))
    attr_transform = gf.get(transform_kwargs.pop("attr_transform", None))
    label_transform = gf.get(transform_kwargs.pop("label_transform", None))

    return gf.BunchDict(graph_transform=graph_transform,
                        adj_transform=adj_transform,
                        attr_transform=attr_transform,
                        label_transform=label_transform)
示例#12
0
    def data_step(self, adj_transform="add_self_loop", feat_transform=None):
        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)
        feat, g = gf.astensors(attr_matrix,
                               adj_matrix,
                               device=self.data_device)

        # ``g`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, g=g)
示例#13
0
    def data_step(self,
                  adj_transform="normalize_adj",
                  attr_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix).toarray()
        node_attr = gf.get(attr_transform)(graph.node_attr)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=node_attr, A=adj_matrix)
示例#14
0
    def data_step(self, adj_transform=None, feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        feat = gf.astensor(attr_matrix, device=self.data_device)

        # ``feat`` is cached for later use
        self.register_cache(feat=feat, adj=adj_matrix)
示例#15
0
    def data_step(self, adj_transform="normalize_adj", attr_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.data_device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A, neighbors=gf.find_4o_nbrs(adj_matrix))
示例#16
0
    def __init__(self,
                 *graph,
                 n_samples=50,
                 adj_transform="normalize_adj",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a sample-based Batch Virtual Adversarial Training
        Graph Convolutional Networks (SBVAT) model.

         This can be instantiated in several ways:

            model = SBVAT(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = SBVAT(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node
                 attributes, `labels` is a 1D Numpy array denoting the node labels.


        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        n_samples (Positive integer, optional):
            The number of sampled subset nodes in the graph where the length of the
            shortest path between them is at least `4`. (default :obj: `50`)
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'normalize_adj'` with normalize rate `-0.5`.
            i.e., math:: \hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}})
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        device: string. optional
            The device where the model is running on. You can specified `CPU` or `GPU`
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional
            Used in combination with `tf.random.set_seed` & `np.random.seed`
            & `random.seed` to create a reproducible sequence of tensors across
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.
        """
        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.n_samples = n_samples
        self.process()
示例#17
0
    def __init__(self,
                 *graph,
                 adj_transform="normalize_adj",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a Edge Convolution version of Graph Convolutional Networks (EdgeGCN) model.

            This can be instantiated in several ways:

                model = EdgeGCN(graph)
                    with a `graphgallery.data.Graph` instance representing
                    A sparse, attributed, labeled graph.

                model = EdgeGCN(adj_matrix, node_attr, labels)
                    where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                     `node_attr` is a 2D Numpy array-like matrix denoting the node 
                     attributes, `labels` is a 1D Numpy array denoting the node labels.


            Parameters:
            ----------
            graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
                A sparse, attributed, labeled graph.
            adj_transform: string, `transform`, or None. optional
                How to transform the adjacency matrix. See `graphgallery.functional`
                (default: :obj:`'normalize_adj'` with normalize rate `-0.5`.
                i.e., math:: \hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) 
            attr_transform: string, `transform`, or None. optional
                How to transform the node attribute matrix. See `graphgallery.functional`
                (default :obj: `None`)
            device: string. optional 
                The device where the model is running on. You can specified `CPU` or `GPU` 
                for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
            seed: interger scalar. optional 
                Used in combination with `tf.random.set_seed` & `np.random.seed` 
                & `random.seed` to create a reproducible sequence of tensors across 
                multiple calls. (default :obj: `None`, i.e., using random seed)
            name: string. optional
                Specified name for the model. (default: :str: `class.__name__`)
            kwargs: other custom keyword parameters.

            Note:
            ----------
            The Graph Edge Convolutional implements the operation using message passing 
                framework, i.e., using Tensor `edge index` and `edge weight` of adjacency 
                matrix to aggregate neighbors' message, instead of SparseTensor `adj`.       
            """
        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.process()
示例#18
0
    def data_step(self, adj_transform="normalize_adj", attr_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)
        edge_index, edge_weight = gf.sparse_adj_to_edge(adj_matrix)

        X, E = gf.astensors(node_attr, (edge_index.T, edge_weight),
                            device=self.data_device)
        # ``E`` and ``X`` are cached for later use
        self.register_cache(E=E, X=X)
示例#19
0
    def __init__(self,
                 *graph,
                 order=2,
                 adj_transform="add_selfloops",
                 attr_transform=None,
                 device='cpu:0',
                 seed=None,
                 name=None,
                 **kwargs):
        r"""Create a Simplifying Graph Convolutional Networks (SGC) model.


        This can be instantiated in several ways:

            model = SGC(graph)
                with a `graphgallery.data.Graph` instance representing
                A sparse, attributed, labeled graph.

            model = SGC(adj_matrix, node_attr, labels)
                where `adj_matrix` is a 2D Scipy sparse matrix denoting the graph,
                 `node_attr` is a 2D Numpy array-like matrix denoting the node 
                 attributes, `labels` is a 1D Numpy array denoting the node labels.


        Parameters:
        ----------
        graph: An instance of `graphgallery.data.Graph` or a tuple (list) of inputs.
            A sparse, attributed, labeled graph.
        order: positive integer. optional 
            The power (order) of adjacency matrix. (default :obj: `2`, i.e., 
            math:: A^{2})            
        adj_transform: string, `transform`, or None. optional
            How to transform the adjacency matrix. See `graphgallery.functional`
            (default: :obj:`'add_selfloops'`, i.e., A = A + I) 
        attr_transform: string, `transform`, or None. optional
            How to transform the node attribute matrix. See `graphgallery.functional`
            (default :obj: `None`)
        device: string. optional 
            The device where the model is running on. You can specified `CPU` or `GPU` 
            for the model. (default: :str: `CPU:0`, i.e., running on the 0-th `CPU`)
        seed: interger scalar. optional 
            Used in combination with `tf.random.set_seed` & `np.random.seed` 
            & `random.seed` to create a reproducible sequence of tensors across 
            multiple calls. (default :obj: `None`, i.e., using random seed)
        name: string. optional
            Specified name for the model. (default: :str: `class.__name__`)
        kwargs: other custom keyword parameters.
        """
        super().__init__(*graph, device=device, seed=seed, name=name, **kwargs)

        self.order = order
        self.adj_transform = gf.get(adj_transform)
        self.attr_transform = gf.get(attr_transform)
        self.process()
示例#20
0
    def data_step(self, adj_transform="normalize_adj", attr_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)
        node_attr = adj_matrix @ node_attr

        X, A = gf.astensor(node_attr, device=self.data_device), adj_matrix

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#21
0
    def data_step(self, adj_transform="add_self_loop", feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        feat = gf.astensor(attr_matrix, device=self.data_device)
        # without considering `edge_weight`
        edges = gf.astensor(adj_matrix, device=self.data_device)[0]

        # ``edges`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, edges=edges)
示例#22
0
    def data_step(self,
                  adj_transform=("normalize_adj", dict(symmetric=False)),
                  feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        feat, adj = gf.astensors(attr_matrix, adj_matrix, device=self.data_device)

        # ``adj`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, adj=adj)
示例#23
0
    def data_step(self,
                  adj_transform=("cheby_basis", dict(K=2)),
                  feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        feat, adj = gf.astensors(attr_matrix, adj_matrix, device=self.data_device)

        # ``adj`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, adj=adj)
示例#24
0
    def data_step(self,
                  adj_transform=None,
                  feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        X, A = gf.astensors(attr_matrix, device=self.data_device), adj_matrix

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#25
0
    def data_step(self,
                  adj_transform=("normalize_adj", dict(rate=[-0.5, -1.0])),
                  feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        X, A = gf.astensors(attr_matrix, adj_matrix, device=self.data_device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#26
0
    def data_step(self, adj_transform="normalize_adj", feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)

        feat, edges = gf.astensors(attr_matrix,
                                   adj_matrix,
                                   device=self.data_device)

        # ``edges`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, edges=edges)
示例#27
0
    def data_step(self,
                  adj_transform=("normalize_adj", dict(symmetric=False)),
                  attr_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.data_device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#28
0
    def process_step(self,
                     adj_transform="add_selfloops",
                     attr_transform=None,
                     graph_transform=None):

        graph = gf.get(graph_transform)(self.graph)
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#29
0
    def process_step(self,
                     adj_transform=("normalize_adj", dict(fill_weight=0.0)),
                     attr_transform=None,
                     graph_transform=None):

        graph = gf.get(graph_transform)(self.graph)
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        node_attr = gf.get(attr_transform)(graph.node_attr)

        X, A = gf.astensors(node_attr, adj_matrix, device=self.device)

        # ``A`` and ``X`` are cached for later use
        self.register_cache(X=X, A=A)
示例#30
0
    def data_step(self,
                  adj_transform="normalize_adj",
                  feat_transform=None):

        graph = self.graph
        adj_matrix = gf.get(adj_transform)(graph.adj_matrix)
        attr_matrix = gf.get(feat_transform)(graph.attr_matrix)
        attr_matrix = adj_matrix @ attr_matrix

        feat, adj = gf.astensor(attr_matrix, device=self.data_device), adj_matrix

        # ``adj`` and ``feat`` are cached for later use
        self.register_cache(feat=feat, adj=adj)