import torch import dgl import graphgallery print("GraphGallery version: ", graphgallery.__version__) print("Torch version: ", torch.__version__) print("DGL version: ", dgl.__version__) ''' Load Datasets - cora/citeseer/pubmed ''' from graphgallery.datasets import Planetoid data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False) graph = data.graph splits = data.split_nodes() graphgallery.set_backend("dgl") from graphgallery.gallery import GAT trainer = GAT(graph, device="gpu", seed=123).process(attr_transform="normalize_attr").build() his = trainer.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=200) results = trainer.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
#!/usr/bin/env python # coding: utf-8 import graphgallery import tensorflow as tf graphgallery.set_memory_growth() print("GraphGallery version: ", graphgallery.__version__) print("TensorFlow version: ", tf.__version__) ''' Load Datasets - cora/citeseer/pubmed ''' from graphgallery.datasets import Planetoid data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False) graph = data.graph splits = data.split_nodes() from graphgallery.gallery import GAT model = GAT(graph, attr_transform="normalize_attr", device="gpu", seed=123) model.build() his = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = model.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')