def __init__(self, is_quantum, states_df, vtx_to_states=None): """ Constructor Parameters ---------- is_quantum : bool states_df : pandas.DataFrame vtx_to_states : dict[str, list[str]] A dictionary mapping each node name to a list of its state names. This information will be stored in self.bnet. If vtx_to_states=None, constructor will learn vtx_to_states from states_df Returns ------- """ nd_names = states_df.columns ord_nodes = [BayesNode(k, nd_names[k]) for k in range(len(nd_names))] bnet = BayesNet(set(ord_nodes)) self.is_quantum = is_quantum self.bnet = bnet self.states_df = states_df self.ord_nodes = ord_nodes if not vtx_to_states: bnet.learn_nd_state_names(states_df) else: bnet.import_nd_state_names(vtx_to_states)
def build_bnet(): """ Builds simple 7 node binary tree a0 / \ b0 b1 / \ / \ c0 c1,c2 c3 All arrows pointing down """ a0 = BayesNode(0, name="a0") b0 = BayesNode(1, name="b0") b1 = BayesNode(2, name="b1") c0 = BayesNode(3, name="c0") c1 = BayesNode(4, name="c1") c2 = BayesNode(5, name="c2") c3 = BayesNode(6, name="c3") a0.add_children([b0, b1]) b0.add_children([c0, c1]) b1.add_children([c2, c3]) nodes = {a0, b0, b1, c0, c1, c2, c3} a0.potential = DiscreteUniPot(False, a0) # P(a) b0.potential = DiscreteCondPot(False, [a0, b0]) # P(b| a) b1.potential = DiscreteCondPot(False, [a0, b1]) c0.potential = DiscreteCondPot(False, [b0, c0]) c1.potential = DiscreteCondPot(False, [b0, c1]) c2.potential = DiscreteCondPot(False, [b1, c2]) c3.potential = DiscreteCondPot(False, [b1, c3]) # in general # DiscreteCondPot(False, [y1, y2, y3, x]) refers to P(x| y1, y2, y3) # off = 0 # on = 1 a0.potential.pot_arr = np.array([.7, .3]) b0.potential.pot_arr = np.array([[.5, .5], [.4, .6]]) b1.potential.pot_arr = np.array([[.2, .8], [.4, .6]]) c0.potential.pot_arr = np.array([[.3, .7], [.4, .6]]) c1.potential.pot_arr = np.array([[.5, .5], [.9, .1]]) c2.potential.pot_arr = np.array([[.8, .2], [.4, .6]]) c3.potential.pot_arr = np.array([[.5, .5], [.6, .4]]) return BayesNet(nodes)
def build_bnet(): """ Builds QBnet called QuWetGrass with diamond shape Cloudy / \ Rain Sprinkler \ / WetGrass All arrows pointing down """ cl = BayesNode(0, name="Cloudy") sp = BayesNode(1, name="Sprinkler") ra = BayesNode(2, name="Rain") we = BayesNode(3, name="WetGrass") we.add_parent(sp) we.add_parent(ra) sp.add_parent(cl) ra.add_parent(cl) nodes = {cl, ra, sp, we} cl.potential = DiscreteUniPot(True, cl) # P(a) sp.potential = DiscreteCondPot(True, [cl, sp]) # P(b| a) ra.potential = DiscreteCondPot(True, [cl, ra]) we.potential = DiscreteCondPot(True, [sp, ra, we]) # in general # DiscreteCondPot(True, [y1, y2, y3, x]) refers to A(x| y1, y2, y3) # off = 0 # on = 1 cl.potential.pot_arr[:] = [.5 + .1j, .5] ra.potential.pot_arr[1, :] = [.5 - .1j, .5 + .3j] ra.potential.pot_arr[0, :] = [.4, .6 - .7j] sp.potential.pot_arr[1, :] = [.7 + 3.j, .3 - 1.j] sp.potential.pot_arr[0, :] = [.2 + .5j, .8] we.potential.pot_arr[1, 1, :] = [.01 + 1j, .99] we.potential.pot_arr[1, 0, :] = [.01 - 5.j, .99] we.potential.pot_arr[0, 1, :] = [.01, .99 + 2.3j] we.potential.pot_arr[0, 0, :] = [.99, .01 - .01j] cl.potential.normalize_self() ra.potential.normalize_self() sp.potential.normalize_self() we.potential.normalize_self() return BayesNet(nodes)
def build_bnet(): """ Builds CBnet called WetGrass with diamond shape Cloudy / \ Rain Sprinkler \ / WetGrass All arrows pointing down """ cl = BayesNode(0, name="Cloudy") sp = BayesNode(1, name="Sprinkler") ra = BayesNode(2, name="Rain") we = BayesNode(3, name="WetGrass") we.add_parent(sp) we.add_parent(ra) sp.add_parent(cl) ra.add_parent(cl) nodes = {cl, ra, sp, we} cl.potential = DiscreteUniPot(False, cl) # P(a) sp.potential = DiscreteCondPot(False, [cl, sp]) # P(b| a) ra.potential = DiscreteCondPot(False, [cl, ra]) we.potential = DiscreteCondPot(False, [sp, ra, we]) # in general # DiscreteCondPot(False, [y1, y2, y3, x]) refers to P(x| y1, y2, y3) # off = 0 # on = 1 cl.potential.pot_arr[:] = [.5, .5] ra.potential.pot_arr[1, :] = [.5, .5] ra.potential.pot_arr[0, :] = [.4, .6] sp.potential.pot_arr[1, :] = [.7, .3] sp.potential.pot_arr[0, :] = [.2, .8] we.potential.pot_arr[1, 1, :] = [.01, .99] we.potential.pot_arr[1, 0, :] = [.01, .99] we.potential.pot_arr[0, 1, :] = [.01, .99] we.potential.pot_arr[0, 0, :] = [.99, .01] return BayesNet(nodes)
def build_bnet(): """ Builds CBnet in accompanying gif : bnet_HuangDarwiche.gif From "Inference Belief Networks: A Procedural Guide", by C.Huang and A. Darwiche """ a_node = BayesNode(0, name="A") b_node = BayesNode(1, name="B") c_node = BayesNode(2, name="C") d_node = BayesNode(3, name="D") e_node = BayesNode(4, name="E") f_node = BayesNode(5, name="F") g_node = BayesNode(6, name="G") h_node = BayesNode(7, name="H") b_node.add_parent(a_node) c_node.add_parent(a_node) d_node.add_parent(b_node) e_node.add_parent(c_node) f_node.add_parent(d_node) f_node.add_parent(e_node) g_node.add_parent(c_node) h_node.add_parent(e_node) h_node.add_parent(g_node) nodes = { a_node, b_node, c_node, d_node, e_node, f_node, g_node, h_node } a_node.potential = DiscreteUniPot(False, a_node) # P(a) b_node.potential = DiscreteCondPot(False, [a_node, b_node]) # P(b| a) c_node.potential = DiscreteCondPot(False, [a_node, c_node]) d_node.potential = DiscreteCondPot(False, [b_node, d_node]) e_node.potential = DiscreteCondPot(False, [c_node, e_node]) # P(f|d, e) f_node.potential = DiscreteCondPot(False, [d_node, e_node, f_node]) g_node.potential = DiscreteCondPot(False, [c_node, g_node]) h_node.potential = DiscreteCondPot(False, [e_node, g_node, h_node]) # in general # DiscreteCondPot(False, [y1, y2, y3, x]) refers to P(x| y1, y2, y3) # off = 0 # on = 1 a_node.potential.pot_arr[:] = [.5, .5] b_node.potential.pot_arr[1, :] = [.5, .5] b_node.potential.pot_arr[0, :] = [.4, .6] c_node.potential.pot_arr[1, :] = [.7, .3] c_node.potential.pot_arr[0, :] = [.2, .8] d_node.potential.pot_arr[1, :] = [.9, .1] d_node.potential.pot_arr[0, :] = [.5, .5] e_node.potential.pot_arr[1, :] = [.3, .7] e_node.potential.pot_arr[0, :] = [.6, .4] f_node.potential.pot_arr[1, 1, :] = [.01, .99] f_node.potential.pot_arr[1, 0, :] = [.01, .99] f_node.potential.pot_arr[0, 1, :] = [.01, .99] f_node.potential.pot_arr[0, 0, :] = [.99, .01] g_node.potential.pot_arr[1, :] = [.8, .2] g_node.potential.pot_arr[0, :] = [.1, .9] h_node.potential.pot_arr[1, 1, :] = [.05, .95] h_node.potential.pot_arr[1, 0, :] = [.95, .05] h_node.potential.pot_arr[0, 1, :] = [.95, .05] h_node.potential.pot_arr[0, 0, :] = [.95, .05] return BayesNet(nodes)