def train(train_data, test_data=None): G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac)) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") # print(sess.run([model.outputs1], feed_dict={adj_info_ph: minibatch.adj})[0].shape) # embedding from feed_dict # print(sess.run([model.outputs1], feed_dict=feed_dict)[0].shape) # minibatch.node_val_feed_dict(14755)[1].shape # embedding feed_dict_all = dict() feed_dict_all[placeholders['batch']] = minibatch.nodes feed_dict_all[placeholders['batch_size']] = 14755 feed_dict_all[placeholders['dropout']] = 0 feed_dict_all[placeholders['labels']] = minibatch.node_val_feed_dict( 14755)[1] embedding_matrix = sess.run([model.outputs1], feed_dict=feed_dict_all)[0] output_folder_path = '/Volumes/DATA/workspace/aus/GraphSAGE/output' np.savetxt(output_folder_path + '/labels.txt', minibatch.nodes, fmt='%d') np.savetxt(output_folder_path + '/embedding.txt', embedding_matrix, fmt='%.8f') np.savetxt(output_folder_path + '/embedding_projector_format.txt', embedding_matrix, fmt='%.8f', delimiter='\t')
def train(train_data, test_data=None): G = train_data[0] # G 是一个Networkx里的对象,这几个都是经过load_data()处理过的 features = train_data[1] id_map = train_data[2] class_map = train_data[4] class_map2 = train_data[5] class_map3 = train_data[6] #class_map = class_map hierarchy = FLAGS.hierarchy ko_threshold = FLAGS.ko_threshold ko_threshold2 = FLAGS.ko_threshold2 if features is not None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) features = tf.cast(features, tf.float32) for hi_num in range(hierarchy): if hi_num == 0: class_map_ko_0 = construct_class_numpy(class_map) class_map_ko = construct_class_numpy(class_map) a = class_map_ko.sum(axis=0) b = np.sort(a) c = b.tolist() plt.figure() plt.plot(c) plt.legend(loc=0) plt.xlabel('KO index') plt.ylabel('Number') plt.grid(True) plt.axis('tight') plt.savefig("./graph/imbalance.png") plt.show() count = 0 list_del = [] for i in a: if i < ko_threshold: list_del.append(count) count += 1 else: count += 1 class_map_ko = np.delete(class_map_ko, list_del, axis=1) count = 0 for key in class_map: arr = class_map_ko[count, :] class_map[key] = arr.tolist() count += 1 num_classes = class_map_ko.shape[1] elif hi_num == 1: class_map = class_map2 class_map_ko_1 = construct_class_numpy(class_map) class_map_ko = construct_class_numpy(class_map) a = class_map_ko.sum(axis=0) count = 0 list_del = [] for i in a: if i >= ko_threshold or i <= ko_threshold2: list_del.append(count) count += 1 else: count += 1 class_map_ko = np.delete(class_map_ko, list_del, axis=1) count = 0 for key in class_map: arr = class_map_ko[count, :] class_map[key] = arr.tolist() count += 1 num_classes = class_map_ko.shape[1] elif hi_num == 2: class_map = class_map3 class_map_ko_2 = construct_class_numpy(class_map) class_map_ko = construct_class_numpy(class_map) a = class_map_ko.sum(axis=0) count = 0 list_del = [] for i in a: if i > ko_threshold2: list_del.append(count) count += 1 else: count += 1 class_map_ko = np.delete(class_map_ko, list_del, axis=1) count = 0 for key in class_map: arr = class_map_ko[count, :] class_map[key] = arr.tolist() count += 1 num_classes = class_map_ko.shape[1] #if hi_num == 2: #class_map_ko = construct_class_numpy(class_map) OTU_ko_num = class_map_ko.sum(axis=1) count = 0 for num in OTU_ko_num: if num < 100: count += 1 ko_cb = construct_class_para(class_map_ko, 0, FLAGS.beta1) ko_cb = tf.cast(ko_cb, tf.float32) f1_par = construct_class_para(class_map_ko, 1, FLAGS.beta2) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) with open('test_nodes.txt', 'w') as f: json.dump(minibatch.test_nodes, f) ########### list_node = minibatch.nodes for otu in minibatch.train_nodes: if otu in list_node: list_node.remove(otu) for otu in minibatch.val_nodes: if otu in list_node: list_node.remove(otu) for otu in minibatch.test_nodes: if otu in list_node: list_node.remove(otu) ########### if hi_num == 0: adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) # 把adj_info设成Variable应该是因为在训练和测试时会改变adj_info的值,所以 # 用Varible然后用tf.assign()赋值。 adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, minibatch.deg, # 每一个的度 layer_infos, ko_cb, hi_num, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=False) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'mlp': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, ko_cb, hi_num, aggregator_type="mlp", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, ko_cb, hi_num, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'gat': sampler = UniformNeighborSampler(adj_info) # 建立两层网络 采样邻居、邻居个数、输出维度 layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, minibatch.deg, concat=True, layer_infos=layer_infos, aggregator_type="gat", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, ) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto( log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) # sess = tf_dbg.LocalCLIDebugWrapperSession(sess) #merged = tf.summary.merge_all() # 将所有东西保存到磁盘,可视化会用到 #summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # 记录信息,可视化,可以用tensorboard查看 # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) #sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph2: minibatch2.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] epoch_val_costs2 = [] # 这里minibatch.adj和minibathc.test_adj的大小是一样的,只不过adj里面把不是train的值都变成一样 # val在这里是validation的意思,验证 train_adj_info = tf.assign( adj_info, minibatch.adj ) # tf.assign()是为一个tf.Variable赋值,返回值是一个Variable,是赋值后的值 val_adj_info = tf.assign( adj_info, minibatch.test_adj) # assign()是一个Opration,要用sess.run()才能执行 it = 0 train_loss = [] val_loss = [] train_f1_mics = [] val_f1_mics = [] loss_plt = [] loss_plt2 = [] trainf1mi = [] trainf1ma = [] valf1mi = [] valf1ma = [] iter_num = 0 for epoch in range(FLAGS.epochs * 2): if epoch < FLAGS.epochs: minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary # 通过改变feed_dict来改变每次minibatch的节点 feed_dict, labels = minibatch.next_minibatch_feed_dict( ) # feed_dict是mibatch修改过的placeholder feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[1] iter_num = iter_num + 1 loss_plt.append(float(train_cost)) if iter % FLAGS.print_every == 0: # Validation 验证集 sess.run(val_adj_info.op ) # sess.run() fetch参数是一个Opration,代表执行这个操作。 if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration, otu_lazy, _, val_preds, __, val_accuracy, val_mi_roc_auc = incremental_evaluate( sess, model, minibatch, f1_par, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration, val_accuracy, val_mi_roc_auc = evaluate( sess, model, minibatch, f1_par, FLAGS.validate_batch_size) sess.run(train_adj_info.op ) # 每一个tensor都有op属性,代表产生这个张量的opration。 epoch_val_costs[-1] += val_cost #if iter % FLAGS.print_every == 0: #summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) loss_plt2.append(float(val_cost)) valf1mi.append(float(val_f1_mic)) valf1ma.append(float(val_f1_mac)) if iter % FLAGS.print_every == 0: train_f1_mic, train_f1_mac, train_f1_none, train_accuracy, train_mi_roc_auc = calc_f1( labels, outs[-1], f1_par) trainf1mi.append(float(train_f1_mic)) trainf1ma.append(float(train_f1_mac)) print( "Iter:", '%04d' % iter, # 训练集上的损失函数等信息 "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "train_accuracy=", "{:.5f}".format(train_accuracy), "train_ra_mi=", "{:.5f}".format(train_mi_roc_auc), # 在测试集上的损失函数值等信息 "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "val_accuracy=", "{:.5f}".format(val_accuracy), "val_ra_mi=", "{:.5f}".format(val_mi_roc_auc), "time=", "{:.5f}".format(avg_time)) train_loss.append(train_cost) val_loss.append(val_cost) train_f1_mics.append(train_f1_mic) val_f1_mics.append(val_f1_mic) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break ################################################################################################################### # begin second degree training ################################################################################################################### """"" else: minibatch2.shuffle() iter = 0 print('Epoch2: %04d' % (epoch + 1)) epoch_val_costs2.append(0) while not minibatch2.end(): # Construct feed dictionary # 通过改变feed_dict来改变每次minibatch的节点 feed_dict, labels = minibatch2.next_minibatch_feed_dict() # feed_dict是mibatch修改过的placeholder feed_dict.update({placeholders2['dropout']: FLAGS.dropout}) t = time.time() # Training step #global model2 outs = sess.run([merged, model2.opt_op, model2.loss, model2.preds], feed_dict=feed_dict) train_cost = outs[2] iter_num = iter_num + 1 loss_plt.append(float(train_cost)) if iter % FLAGS.print_every == 0: # Validation 验证集 sess.run(val_adj_info2.op) # sess.run() fetch参数是一个Opration,代表执行这个操作。 if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration, otu_lazy = incremental_evaluate(sess, model2, minibatch2, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate(sess, model2, minibatch2, FLAGS.validate_batch_size) sess.run(train_adj_info2.op) # 每一个tensor都有op属性,代表产生这个张量的opration。 epoch_val_costs2[-1] += val_cost if iter % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) loss_plt2.append(float(val_cost)) valf1mi.append(float(val_f1_mic)) valf1ma.append(float(val_f1_mac)) if iter % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) trainf1mi.append(float(train_f1_mic)) trainf1ma.append(float(train_f1_mac)) print("Iter:", '%04d' % iter, # 训练集上的损失函数等信息 "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), # 在测试集上的损失函数值等信息 "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) train_loss.append(train_cost) val_loss.append(val_cost) train_f1_mics.append(train_f1_mic) val_f1_mics.append(val_f1_mic) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break """ print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration, otu_f1, ko_none, test_preds, test_labels, test_accuracy, test_mi_roc_auc = incremental_evaluate( sess, model, minibatch, f1_par, FLAGS.batch_size, test=True) print( "Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "accuracy=", "{:.5f}".format(test_accuracy), "roc_auc_mi=", "{:.5f}".format(test_mi_roc_auc), "time=", "{:.5f}".format(duration), ) if hi_num == 0: last_train_f1mi = trainf1mi last_train_f1ma = trainf1ma last_train_loss = loss_plt final_preds = test_preds final_labels = test_labels else: final_preds = np.hstack((final_preds, test_preds)) final_labels = np.hstack((final_labels, test_labels)) if hi_num == hierarchy - 1: # update test preds """ ab_ko = json.load(open(FLAGS.train_prefix + "-below1500_ko_idx.json")) #ab_ko = construct_class_numpy(ab_ko) f1_par = construct_class_para(class_map_ko_0, 1, FLAGS.beta2) i = 0 for col in ab_ko: last_preds[..., col] = test_preds[..., i] i += 1 f1_scores = calc_f1(last_preds, last_labels, f1_par) """ #pdb.set_trace() f1_par = construct_class_para(class_map_ko_0, 1, FLAGS.beta2) #final_preds = np.hstack((last_preds, test_preds)) #final_labels = np.hstack((last_labels, test_labels)) f1_scores = calc_f1(final_preds, final_labels, f1_par) print('\n', 'Hierarchy combination f1 score:') print("f1_micro=", "{:.5f}".format(f1_scores[0]), "f1_macro=", "{:.5f}".format(f1_scores[1]), "accuracy=", "{:.5f}".format(f1_scores[3]), "roc_auc_mi=", "{:.5f}".format(f1_scores[4])) pred = y_ture_pre(sess, model, minibatch, FLAGS.batch_size) for i in range(pred.shape[0]): sum = 0 for l in range(pred.shape[1]): sum = sum + pred[i, l] for m in range(pred.shape[1]): pred[i, m] = pred[i, m] / sum id = json.load(open(FLAGS.train_prefix + "-id_map.json")) # x_train = np.empty([pred.shape[0], array.s) num = 0 session = tf.Session() array = session.run(features) x_test = np.empty([pred.shape[0], array.shape[1]]) x_train = np.empty([len(minibatch.train_nodes), array.shape[1]]) for node in minibatch.val_nodes: x_test[num] = array[id[node]] num = num + 1 num1 = 0 for node in minibatch.train_nodes: x_train[num1] = array[id[node]] num1 = num1 + 1 with open(log_dir() + "val_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}". format(val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration, otu_lazy, ko_none, _, __, test_accuracy, test_mi_roc_auc = incremental_evaluate( sess, model, minibatch, f1_par, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac)) incremental_evaluate_for_each(sess, model, minibatch, FLAGS.batch_size, test=True) ################################################################################################################## # plot loss plt.figure() plt.plot(loss_plt, label='train_loss') plt.plot(loss_plt2, label='val_loss') plt.legend(loc=0) plt.xlabel('Iteration') plt.ylabel('loss') plt.title('Loss plot') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HOPE_same_loss.png") plt.show() # plot loss1+loss2 plt.figure() plt.plot(last_train_loss, label='train_loss1') plt.plot(loss_plt, label='train_loss2') plt.legend(loc=0) plt.xlabel('Iteration') plt.ylabel('loss') plt.title('Loss plot') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HOPE_same_loss1+2.png") plt.show() # plot f1 score plt.figure() plt.subplot(211) plt.plot(trainf1mi, label='train_f1_micro') plt.plot(valf1mi, label='val_f1_micro') plt.legend(loc=0) plt.xlabel('Iterations') plt.ylabel('f1_micro') plt.title('train_val_f1_score') plt.grid(True) plt.axis('tight') plt.subplot(212) plt.plot(trainf1ma, label='train_f1_macro') plt.plot(valf1ma, label='val_f1_macro') plt.legend(loc=0) plt.xlabel('Iteration') plt.ylabel('f1_macro') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HOPE_same_f1.png") plt.show() # plot f1 score1+2 plt.figure() plt.plot(last_train_f1mi, label='train_f1_micro1') plt.plot(last_train_f1ma, label='train_f1_macro1') plt.plot(trainf1mi, label='train_f1_micro2') plt.plot(trainf1ma, label='train_f1_macro2') plt.legend(loc=0) plt.xlabel('Iterations') plt.ylabel('f1_micro') plt.title('train_f1_micro_score') plt.grid(True) plt.axis('tight') # plt.savefig("./graph/HOPE_same_f1_1+2.png") plt.show() # f1 plt.figure() plt.plot(np.arange(len(train_loss)) + 1, train_loss, label='train') plt.plot(np.arange(len(val_loss)) + 1, val_loss, label='val') plt.legend() plt.savefig('loss.png') plt.figure() plt.plot(np.arange(len(train_f1_mics)) + 1, train_f1_mics, label='train') plt.plot(np.arange(len(val_f1_mics)) + 1, val_f1_mics, label='val') plt.legend() plt.savefig('f1.png') # OTU f1 plt.figure() plt.plot(otu_f1, label='otu_f1') plt.legend(loc=0) plt.xlabel('OTU') plt.ylabel('f1_score') plt.title('OTU f1 plot') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HOPE_same_otu_f1.png") plt.show() ko_none = f1_scores[2] # Ko f1 score plt.figure() plt.plot(ko_none, label='Ko f1 score') plt.legend(loc=0) plt.xlabel('Ko') plt.ylabel('f1_score') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HOPE_same_ko_f1.png") bad_ko = [] b02 = 0 b05 = 0 b07 = 0 for i in range(len(ko_none)): if ko_none[i] < 0.2: bad_ko.append(i) b02 += 1 elif ko_none[i] < 0.5: b05 += 1 elif ko_none[i] < 0.7: b07 += 1 print("ko f1 below 0.2:", b02) print("ko f1 below 0.5:", b05) print("ko f1 below 0.7:", b07) print("ko f1 over 0.7:", len(ko_none) - b02 - b05 - b07) bad_ko = np.array(bad_ko) with open('./new_data_badko/graph10 ko below zero point two .txt', 'w') as f: np.savetxt(f, bad_ko, fmt='%d', delimiter=",")
avg_time = 0.0 epoch_val_costs = [] min_loss = np.inf max_acc = 0 train_adj_info = tf.compat.v1.assign(adj_info, minibatch.adj) val_adj_info = tf.compat.v1.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[1] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_pred, val_f1_mic, val_f1_mac,val_acc, val_roc,val_aupr, val_lbl = \ incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) else:
def train(train_data, test_data=None): G = train_data[0] # features = train_data[1] id_map = train_data[1] class_map = train_data[3] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) # # if not features is None: # # pad with dummy zero vector # features = np.vstack([features, np.zeros((features.shape[1],))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs = context_pairs,mode="train", prefix=FLAGS.train_prefix) features = minibatch.features adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2)] elif FLAGS.samples_2 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] else: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, 2*FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2*FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model print(layer_infos) total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) # Load trained model if os.path.exists("TVYoutubesupervisedTrainedModel_MC_marginal/"): print("Entered in the Loop = == = == = == ") var_to_save = [] for var in tf.trainable_variables(): var_to_save.append(var) saver = tf.train.Saver(var_to_save) print("Trained Model Loading!") saver.restore(sess,"TVYoutubesupervisedTrainedModel_MC_marginal/model.ckpt") print("Trained Model Loaded!") # ------------------------------------------------------------------ for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] # # if iter % FLAGS.validate_iter == 0: # # Validation # sess.run(val_adj_info.op) # if FLAGS.validate_batch_size == -1: # val_cost, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) # else: # val_cost, duration = evaluate(sess, model, minibatch, FLAGS.validate_batch_size) # sess.run(train_adj_info.op) # epoch_val_costs[-1] += val_cost # # if total_steps % FLAGS.print_every == 0: # summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: # train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.8f}".format(train_cost), # "val_loss=", "{:.8f}".format(val_cost), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") var_to_save = [] for var in tf.trainable_variables(): var_to_save.append(var) saver = tf.train.Saver(var_to_save) save_path = saver.save(sess, "TVYoutubesupervisedTrainedModel_MC_marginal/model.ckpt") print("*** Saved: Model", save_path) # sess.run(val_adj_info.op) # val_cost, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) # print("Full validation stats:", # "loss=", "{:.12f}".format(val_cost), # "time=", "{:.12f}".format(duration)) # with open(log_dir() + "val_stats_train.txt", "w") as fp: # fp.write("loss={:.5f} time={:.5f}". # format(val_cost, duration)) print("Writing test set stats to file (don't peak!)")
def train(train_data, test_data=None): G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1],))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs = context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2)] elif FLAGS.samples_2 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] else: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1)] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, 2*FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2*FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss = FLAGS.sigmoid, identity_dim = FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Save model saver = tf.train.Saver() model_path = './model/' + FLAGS.train_prefix.split('/')[-1] + '-' + FLAGS.model_prefix + '/' if not os.path.exists(model_path): os.makedirs(model_path) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate(sess, model, minibatch, FLAGS.validate_batch_size) # accumulate val results val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) # sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break # Save model save_path = saver.save(sess, model_path+'model.ckpt') print ('model is saved at %s'%save_path) print("Validation per epoch in training") for ep in range(FLAGS.epochs): print("Epoch: %04d"%ep, " val_cost={:.5f}".format(val_cost_[ep]), " val_f1_mic={:.5f}".format(val_f1_mic_[ep]), " val_f1_mac={:.5f}".format(val_f1_mac_[ep]), " duration={:.5f}".format(duration_[ep])) print("Optimization Finished!") sess.run(val_adj_info.op) # full validation val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] for iter in range(10): val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) # write validation results with open(log_dir() + "val_stats.txt", "w") as fp: for iter in range(10): fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n".format(val_cost_[iter], val_f1_mic_[iter], val_f1_mac_[iter], duration_[iter])) fp.write("mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n".format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) fp.write("variance: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n".format(np.var(val_cost_), np.var(val_f1_mic_), np.var(val_f1_mac_), np.var(duration_))) # test val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] print("Writing test set stats to file (don't peak!)") for iter in range(10): val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size, test=True) val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) # write test results with open(log_dir() + "test_stats.txt", "w") as fp: for iter in range(10): fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(val_cost_[iter], val_f1_mic_[iter], val_f1_mac_[iter], duration_[iter])) fp.write("mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) fp.write("variance: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.var(val_cost_), np.var(val_f1_mic_), np.var(val_f1_mac_), np.var(duration_)))
def train(train_data, action, test_data=None): config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session # 定义作用域,不然会与Controller发生冲突 with tf.Session(config=config, graph=tf.Graph()) as sess: with sess.as_default(): with sess.graph.as_default(): # Set random seed seed = 123 np.random.seed(seed) tf.set_random_seed(seed) G = train_data[0] # 图数据 features = train_data[1] #节点特征值 id_map = train_data[2] #节点id对index的映射 class_map = train_data[4] # 节点类别 #计算类别数量 if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) # 添加一个全0的数据,不知道用途 if not features is None: # pad with dummy zero vector features = np.vstack( [features, np.zeros((features.shape[1], ))]) # 随机游走生成共现边,用来替换图中边信息 context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator( G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) # 用于批处理 adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") # 创建模型 sampler = UniformNeighborSampler(adj_info) # 邻居采样,方式为随机重排邻居 state_nums = 2 # Controller定义的状态数量 layers_num = len(action) // state_nums #计算层数 layer_infos = [] # 用于指导最终GNN的生层,这里只修改了采样数量 # for i in range(layers_num): layer_infos.append( SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1)) layer_infos.append( SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_1)) # 用于NAS的监督GraphSage model = NASSupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, state_nums=state_nums, action=action, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # 记录 merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(action), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict( ) feed_dict.update( {placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run( [merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1( labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) # 分批(增量式)验证 val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir(action) + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}" .format(val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir(action) + "test_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac)) tf.reset_default_graph() #用f1指数替换accuracy,此处未做滑动指数平均 return get_rewards(val_f1_mic), val_f1_mic
def train(train_data, test_data=None): G = train_data[0] # [z]: networkx.Graph features = train_data[1] # [z]: |V|xD id_map = train_data[2] # class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) # [z]: what is context? -- a list of random walks context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) # [z]: minibatch.adj is a adj list of a uniform graph sampled from the input graph minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) # [z]: adj_info_ph is of R^{|V|xFLAGS.max_degree} # [z]: minibatch.adj is R^{|V|xD} adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: # [z]: SAGEInfo: [layer_name, neigh_sampler, num_samples, output_dim] # [z]: NOTE: i should probably start from single layer model. i.e., FLAGS.samples_2 = 0 layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage( num_classes, placeholders, features, # [z]: |V|xD adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, # [z]: can be small or big? sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] # [z]: adj_info, this adj is for the whole graph train_adj_info = tf.assign(adj_info, minibatch.adj) # [z]: minibatch.test_adj is also the adj of the whole graph! val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step # [z]: actually calculate the values in SupervisedGraphsage.build() # [z]: feed_dict should be fed to a tf.placeholder # [z]: opt_op is applying gradients to the params, but it does not return anything. # [z]: model.preds is R^{512x121} outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) #for k in z.debug_vars.keys(): # print('-------------- {} --------------'.format(k)) # dbg = sess.run(z.debug_vars[k], feed_dict=feed_dict) # import pdb; pdb.set_trace() train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac))
def train(train_data, test_data=None): # return G, feats, id_map, walks, class_map G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] # 获取类别个数 if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) # 在预训练特征 后 加入一行0矩阵 , 用于 wx+b 中 与b相加 if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) # 垂直堆叠 # 初始化随机游走序列 context_pairs = train_data[ 3] if FLAGS.random_context else None # 先执行中间的If 如果返回True执行左边 否右边 # 初始化placeholder ,包括label、batch:就是构造那些不需要训练的输入输出节点 placeholders = construct_placeholders(num_classes) # 初始化NodeMinibatchIterator: 初始化训练集等 minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") # 转化为无需训练的张量,这一步的目的比较迷惑 if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) # 初始化随机获取邻居节点的采样器 if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo( "node", sampler, FLAGS.samples_1, FLAGS.dim_1), # FLAGS.samples_1 样本数量 FLAGS.dim_1 隐藏层的输出维度 SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # 指定文件来保存图 # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # ph的意思是?之前说过是相位 含义:训练集的邻接节点 # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] # 训练集和测试集的train_adj_info赋值,存储邻接节点的信息。只有run了节点,赋值才会生效。 train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({ placeholders['dropout']: FLAGS.dropout }) # 现在feed_dict里输出的节点有:dropout、batch_size、batch(样本点的集合)、labels # LOG # print("inputs1 shape", sess.run([model.shapelog],feed_dict=feed_dict)) print("inputs:", sess.run([model.inputs1], feed_dict=feed_dict)) print("samples0", sess.run([model.log0], feed_dict=feed_dict)) print("samples1", sess.run([model.log1], feed_dict=feed_dict)) print("samples2", sess.run([model.log2], feed_dict=feed_dict)) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] # log break if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac))
def train(train_data, test_data=None): G = train_data[0] features_np = train_data[1] id_map = train_data[2] train_nodes = train_data[3] class_map = train_data[4] num_classes = class_map.shape[1] if not features_np is None: # pad with dummy zero vector features_np = np.vstack([features_np, np.zeros((features_np.shape[1],))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, train_nodes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") features_ph = tf.placeholder(tf.float32, shape=features_np.shape) features = tf.Variable(features_ph, trainable=False, name="features") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2)] elif FLAGS.samples_2 != 0: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] else: layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj, features_ph: features_np}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] best = 0 up_adj_info = tf.assign(adj_info, adj_info_ph, name='up_adj') up_features = tf.assign(features, features_ph, name='up_features') for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(up_adj_info.op, feed_dict={adj_info_ph: minibatch.test_adj}) # sess.run([adj_info], feed_dict={adj_info_ph: minibatch.test_adj}) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate(sess, model, minibatch, FLAGS.validate_batch_size) if val_f1_mic > best: print("Saving best model") shutil.rmtree(log_dir() + 'saved_model_best', ignore_errors=True) tf.saved_model.simple_save( sess, log_dir() + 'saved_model_best', {'nodes': placeholders['batch'], 'batch_size': placeholders['batch_size'], # 'adjacency': adj_info_ph, # 'features': features_ph }, {'embeddings': model.outputs1} ) best = val_f1_mic # sess.run([adj_info], feed_dict={adj_info_ph: minibatch.adj}) sess.run(up_adj_info.op, feed_dict={adj_info_ph: minibatch.adj}) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break print("Optimization Finished! Best save model", best) sess.run(up_adj_info.op, feed_dict={adj_info_ph: minibatch.test_adj}) sess.run(up_features.op, feed_dict={features_ph: features_np}) tf.saved_model.simple_save( sess, log_dir() + '/saved_model', {'nodes': placeholders['batch'], 'batch_size': placeholders['batch_size'], # 'adjacency': adj_info_ph, # 'features': features_ph }, {'embeddings': model.outputs1} ) # sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}". format(val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} best={:.5f}". format(val_cost, val_f1_mic, val_f1_mac, best))
def train(train_data, test_data=None): G = train_data[0] features = train_data[1] if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) placeholders = construct_placeholders() minibatch = NodeMinibatchIterator(G, placeholders, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) # Construct feed dictionary feed_dict = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([model.node_preds], feed_dict=feed_dict) print(outs[0].shape) #if total_steps % FLAGS.print_every == 0: # summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!")
def train(train_data, test_data=None): G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.compat.v1.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.compat.v1.ConfigProto( log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize WandB experiment wandb.init(project='chengdu_GraphSAGE', save_code=True, tags=['supervised']) wandb.config.update(flags.FLAGS) # Initialize session sess = tf.compat.v1.Session(config=config) merged = tf.compat.v1.summary.merge_all() summary_writer = tf.compat.v1.summary.FileWriter(log_dir(), sess.graph) # Init variables sess.run(tf.compat.v1.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Init saver saver = tf.compat.v1.train.Saver(max_to_keep=8, keep_checkpoint_every_n_hours=1) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.compat.v1.assign(adj_info, minibatch.adj) val_adj_info = tf.compat.v1.assign(adj_info, minibatch.test_adj) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[2] # Validation if iter % FLAGS.validate_iter == 0: sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) print("[%03d/%03d]" % (epoch + 1, FLAGS.epochs), "Iter:", '%04d' % iter, "train_loss =", "{:.5f}".format(train_cost), "train_f1_mic =", "{:.5f}".format(train_f1_mic), "train_f1_mac =", "{:.5f}".format(train_f1_mac), "val_loss =", "{:.5f}".format(val_cost), "val_f1_mic =", "{:.5f}".format(val_f1_mic), "val_f1_mac =", "{:.5f}".format(val_f1_mac), "time =", "{:.5f}".format(avg_time)) # W&B Logging if FLAGS.wandb_log and iter % FLAGS.wandb_log_iter == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[-1]) wandb.log({'train_loss': train_cost, 'epoch': epoch}) wandb.log({'train_f1_mic': train_f1_mic, 'epoch': epoch}) wandb.log({'train_f1_mac': train_f1_mac, 'epoch': epoch}) wandb.log({'val_cost': val_cost, 'epoch': epoch}) wandb.log({'val_f1_mic': val_f1_mic, 'epoch': epoch}) wandb.log({'val_f1_mac': val_f1_mac, 'epoch': epoch}) wandb.log({'time': avg_time, 'epoch': epoch}) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break # Save Model checkpoints if FLAGS.save_checkpoints and epoch % FLAGS.save_checkpoints_epoch == 0: # saver.save(sess, log_dir() + 'model', global_step=1000) print('Save model checkpoint:', wandb.run.dir, iter, total_steps, epoch) saver.save( sess, os.path.join(wandb.run.dir, "model-" + str(epoch + 1) + ".ckpt")) if total_steps > FLAGS.max_total_steps: break print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac))
def train(train_data, test_data=None): G = train_data[0] # G 是一个Networkx里的对象,这几个都是经过load_data()处理过的 features = train_data[1] id_map = train_data[2] class_map1 = train_data[4] class_map2 = train_data[5] class_map3 = train_data[6] dict_classmap = { 0: class_map1, 1: class_map2, 2: class_map3, 3: class_map3 } hierarchy = FLAGS.hierarchy features_shape1 = None a_class = construct_class_numpy(class_map1) b_class = construct_class_numpy(class_map2) c_class = construct_class_numpy(class_map3) a_class = tf.cast(a_class, tf.float32) b_class = tf.cast(b_class, tf.float32) c_class = tf.cast(c_class, tf.float32) num_class = [] # for key in class_map.keys(): # num_class = num_class.append(sum(class_map[key])) for hi_num in range(hierarchy): #tf.reset_default_graph() if hi_num == 0: class_map = class_map1 features = features features_shape1 = features.shape[1] if features is not None: # pad with dummy zero vector features = np.vstack( [features, np.zeros((features.shape[1], ))]) features = tf.cast(features, tf.float32) else: print("hierarchy %d finished" % (hi_num), end='\n\n') class_map = dict_classmap[hi_num] features = features2 features = tf.cast(features, tf.float32) features = tf.concat( [features, tf.zeros([1, features_shape1 + num_classes])], axis=0) features_shape1 = features.shape[1] if hi_num == 0: if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) else: if isinstance(list(dict_classmap[hi_num].values())[0], list): num_classes = len(list(dict_classmap[hi_num].values())[0]) else: num_classes = len(set(dict_classmap[hi_num].values())) """"" if features is not None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1],))]) """ "" # features = tf.cast(features, tf.float32) # embeding_weight=tf.get_variable('emb_weights', [50, 128], initializer=tf.random_normal_initializer(),dtype=tf.float32) # features=tf.matmul(features,embeding_weight) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) ########## with open('test_nodes.txt', 'w') as f: json.dump(minibatch.test_nodes, f) ########### if hi_num == 0: adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape, name='adj_info_ph') # 把adj_info设成Variable应该是因为在训练和测试时会改变adj_info的值,所以 # 用Varible然后用tf.assign()赋值。 adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") shap.initjs() if FLAGS.model == 'graphsage_mean': # Create model sampler = UniformNeighborSampler(adj_info) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, minibatch.deg, # 每一个的度 layer_infos, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True, ) elif FLAGS.model == 'gcn': # Create model sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'graphsage_maxpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'graphsage_meanpool': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, concat=True) elif FLAGS.model == 'gat': sampler = UniformNeighborSampler(adj_info) # 建立两层网络 采样邻居、邻居个数、输出维度 layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, minibatch.deg, concat=True, layer_infos=layer_infos, aggregator_type="gat", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True, ) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto( log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) # sess = tf_dbg.LocalCLIDebugWrapperSession(sess) #merged = tf.summary.merge_all() # 将所有东西保存到磁盘,可视化会用到 #summary_writer = tf.summary.FileWriter(log_dir(), sess.graph) # 记录信息,可视化,可以用tensorboard查看 # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) #sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph2: minibatch2.adj}) # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] epoch_val_costs2 = [] # 这里minibatch.adj和minibathc.test_adj的大小是一样的,只不过adj里面把不是train的值都变成一样 # val在这里是validation的意思,验证 train_adj_info = tf.assign( adj_info, minibatch.adj ) # tf.assign()是为一个tf.Variable赋值,返回值是一个Variable,是赋值后的值 val_adj_info = tf.assign( adj_info, minibatch.test_adj) # assign()是一个Opration,要用sess.run()才能执行 it = 0 train_loss = [] val_loss = [] train_f1_mics = [] val_f1_mics = [] loss_plt = [] loss_plt2 = [] trainf1mi = [] trainf1ma = [] valf1mi = [] valf1ma = [] iter_num = 0 if hi_num == 0: epochs = FLAGS.epochs elif hi_num == 1: epochs = FLAGS.epochs2 elif hi_num == 2: epochs = FLAGS.epochs3 else: epochs = FLAGS.epochs4 for epoch in range(epochs + 1): if epoch < epochs: minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) while not minibatch.end(): # Construct feed dictionary # 通过改变feed_dict来改变每次minibatch的节点 feed_dict, labels = minibatch.next_minibatch_feed_dict( ) # feed_dict是mibatch修改过的placeholder feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step outs = sess.run([model.opt_op, model.loss, model.preds], feed_dict=feed_dict) train_cost = outs[1] iter_num = iter_num + 1 loss_plt.append(float(train_cost)) if iter % FLAGS.print_every == 0: # Validation 验证集 sess.run(val_adj_info.op ) # sess.run() fetch参数是一个Opration,代表执行这个操作。 if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration, otu_lazy, _ = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) sess.run(train_adj_info.op ) # 每一个tensor都有op属性,代表产生这个张量的opration。 epoch_val_costs[-1] += val_cost #if iter % FLAGS.print_every == 0: #summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) loss_plt2.append(float(val_cost)) valf1mi.append(float(val_f1_mic)) valf1ma.append(float(val_f1_mac)) if iter % FLAGS.print_every == 0: train_f1_mic, train_f1_mac, train_f1_none = calc_f1( labels, outs[-1]) trainf1mi.append(float(train_f1_mic)) trainf1ma.append(float(train_f1_mac)) print( "Iter:", '%04d' % iter, # 训练集上的损失函数等信息 "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), # 在测试集上的损失函数值等信息 "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(avg_time)) train_loss.append(train_cost) val_loss.append(val_cost) train_f1_mics.append(train_f1_mic) val_f1_mics.append(val_f1_mic) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break # concat features elif hi_num == FLAGS.hierarchy - 1: print("the last outputs") else: iter = 0 minibatch.shuffle() while not minibatch.end(): print("Iter:", '%04d' % iter, "concat") feed_dict, labels = minibatch.next_minibatch_feed_dict( ) # feed_dict是mibatch修改过的placeholder feed_dict.update({placeholders['dropout']: FLAGS.dropout}) x = feed_dict[placeholders['batch']] outs = sess.run([ model.opt_op, model.loss, model.preds, model.node_preds ], feed_dict=feed_dict) features_tail = outs[3] features_tail = tf.cast(features_tail, tf.float32) """"" if hi_num == 0: features_tail = tf.nn.embedding_lookup(a_class, feed_dict[placeholders["batch"]]) elif hi_num == 1: features_tail = tf.nn.embedding_lookup(b_class, feed_dict[placeholders["batch"]]) else: features_tail = tf.nn.embedding_lookup(c_class, feed_dict[placeholders["batch"]]) """ "" hidden = tf.nn.embedding_lookup( features, feed_dict[placeholders["batch"]]) features_inter = tf.concat([hidden, features_tail], axis=1) if iter == 0: features2 = features_inter else: features2 = tf.concat([features2, features_inter], axis=0) iter += 1 # val features & test features iter_num = 0 finished = False while not finished: feed_dict_val, batch_labels, finished, _ = minibatch.incremental_node_val_feed_dict( FLAGS.batch_size, iter_num, test=False) node_outs_val = sess.run( [model.preds, model.loss, model.node_preds], feed_dict=feed_dict_val) tail_val = tf.cast(node_outs_val[2], tf.float32) hidden_val = tf.nn.embedding_lookup( features, feed_dict_val[placeholders["batch"]]) features_inter_val = tf.concat([hidden_val, tail_val], axis=1) iter_num += 1 features2 = tf.concat([features2, features_inter_val], axis=0) print("val features finished") iter_num = 0 finished = False while not finished: feed_dict_test, batch_labels, finished, _ = minibatch.incremental_node_val_feed_dict( FLAGS.batch_size, iter_num, test=True) node_outs_test = sess.run( [model.preds, model.loss, model.node_preds], feed_dict=feed_dict_test) tail_test = tf.cast(node_outs_test[2], tf.float32) hidden_test = tf.nn.embedding_lookup( features, feed_dict_test[placeholders["batch"]]) features_inter_test = tf.concat([hidden_test, tail_test], axis=1) iter_num += 1 features2 = tf.concat([features2, features_inter_test], axis=0) print("test features finished") print("finish features concat") #features2 = sess.run(features2) print("Optimization Finished!") sess.run(val_adj_info.op) val_cost, val_f1_mic, val_f1_mac, duration, otu_f1, ko_none = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) pred = y_ture_pre(sess, model, minibatch, FLAGS.batch_size) for i in range(pred.shape[0]): sum = 0 for l in range(pred.shape[1]): sum = sum + pred[i, l] for m in range(pred.shape[1]): pred[i, m] = pred[i, m] / sum id = json.load(open(FLAGS.train_prefix + "-id_map.json")) # x_train = np.empty([pred.shape[0], array.s) num = 0 session = tf.Session() array = session.run(features) x_test = np.empty([pred.shape[0], array.shape[1]]) x_train = np.empty([len(minibatch.train_nodes), array.shape[1]]) for node in minibatch.val_nodes: x_test[num] = array[id[node]] num = num + 1 num1 = 0 for node in minibatch.train_nodes: x_train[num1] = array[id[node]] num1 = num1 + 1 with open(log_dir() + "val_stats.txt", "w") as fp: fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}".format( val_cost, val_f1_mic, val_f1_mac, duration)) print("Writing test set stats to file (don't peak!)") val_cost, val_f1_mic, val_f1_mac, duration, otu_lazy, ko_none = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, test=True) with open(log_dir() + "test_stats.txt", "w") as fp: fp.write("loss={:.5f} f1_micro={:.5f} f1_macro={:.5f}".format( val_cost, val_f1_mic, val_f1_mac)) incremental_evaluate_for_each(sess, model, minibatch, FLAGS.batch_size, test=True) ################################################################################################################## # plot loss plt.figure() plt.plot(loss_plt, label='train_loss') plt.plot(loss_plt2, label='val_loss') plt.legend(loc=0) plt.xlabel('Iteration') plt.ylabel('loss') plt.title('Loss plot') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HMC12_loss.png") # plt.show() # plot f1 score plt.figure() plt.subplot(211) plt.plot(trainf1mi, label='train_f1_micro') plt.plot(valf1mi, label='val_f1_micro') plt.legend(loc=0) plt.xlabel('Iterations') plt.ylabel('f1_micro') plt.title('train_val_f1_score') plt.grid(True) plt.axis('tight') plt.subplot(212) plt.plot(trainf1ma, label='train_f1_macro') plt.plot(valf1ma, label='val_f1_macro') plt.legend(loc=0) plt.xlabel('Iteration') plt.ylabel('f1_macro') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HMC123_f1.png") # plt.show() plt.figure() plt.plot(np.arange(len(train_loss)) + 1, train_loss, label='train') plt.plot(np.arange(len(val_loss)) + 1, val_loss, label='val') plt.legend() plt.savefig('loss.png') plt.figure() plt.plot(np.arange(len(train_f1_mics)) + 1, train_f1_mics, label='train') plt.plot(np.arange(len(val_f1_mics)) + 1, val_f1_mics, label='val') plt.legend() plt.savefig('f1.png') # OTU f1 plt.figure() plt.plot(otu_f1, label='otu_f1') plt.legend(loc=0) plt.xlabel('OTU') plt.ylabel('f1_score') plt.title('OTU f1 plot') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HMC123_otu_f1.png") # plt.show() #Ko f1 score plt.figure() plt.plot(ko_none, label='Ko f1 score') plt.legend(loc=0) plt.xlabel('Ko') plt.ylabel('f1_score') plt.grid(True) plt.axis('tight') #plt.savefig("./graph/HMC123_ko_f1.png") bad_ko = [] b02 = 0 b05 = 0 b07 = 0 for i in range(len(ko_none)): if ko_none[i] < 0.2: bad_ko.append(i) b02 += 1 bad_ko = np.array(bad_ko) elif ko_none[i] < 0.5: b05 += 1 elif ko_none[i] < 0.7: b07 += 1 print("ko f1 below 0.2:", b02) print("ko f1 below 0.5:", b05) print("ko f1 below 0.7:", b07)
def train(train_data, test_data=None, sampler_name='Uniform'): G = train_data[0] features = train_data[1] id_map = train_data[2] class_map = train_data[4] if isinstance(list(class_map.values())[0], list): num_classes = len(list(class_map.values())[0]) else: num_classes = len(set(class_map.values())) if not features is None: # pad with dummy zero vector features = np.vstack([features, np.zeros((features.shape[1], ))]) context_pairs = train_data[3] if FLAGS.random_context else None placeholders = construct_placeholders(num_classes) minibatch = NodeMinibatchIterator(G, id_map, placeholders, class_map, num_classes, batch_size=FLAGS.batch_size, max_degree=FLAGS.max_degree, context_pairs=context_pairs) adj_info_ph = tf.placeholder(tf.int32, shape=minibatch.adj.shape) adj_info = tf.Variable(adj_info_ph, trainable=False, name="adj_info") adj_shape = adj_info.get_shape().as_list() # loss_node = tf.SparseTensor(indices=np.empty((0,2), dtype=np.int64), values=[], dense_shape=[adj_shape[0], adj_shape[0]]) # loss_node_count = tf.SparseTensor(indices=np.empty((0,2), dtype=np.int64), values=[], dense_shape=[adj_shape[0], adj_shape[0]]) # # newly added for storing cost in each adj cell # loss_node = tf.Variable(tf.zeros([minibatch.adj.shape[0], minibatch.adj.shape[0]]), trainable=False, name="loss_node", dtype=tf.float32) # loss_node_count = tf.Variable(tf.zeros([minibatch.adj.shape[0], minibatch.adj.shape[0]]), trainable=False, name="loss_node_count", dtype=tf.float32) if FLAGS.model == 'mean_concat': # Create model if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_3) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' # modified model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, #loss_node, #loss_node_count, minibatch.deg, layer_infos, concat=True, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # # model = SupervisedGraphsage(num_classes, placeholders, # features, # adj_info, # minibatch.deg, # layer_infos, # model_size=FLAGS.model_size, # sigmoid_loss = FLAGS.sigmoid, # identity_dim = FLAGS.identity_dim, # logging=True) elif FLAGS.model == 'mean_add': # Create model if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_3) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' # modified model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, #loss_node, #loss_node_count, minibatch.deg, layer_infos, concat=False, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # # model = SupervisedGraphsage(num_classes, placeholders, # features, # adj_info, # minibatch.deg, # layer_infos, # model_size=FLAGS.model_size, # sigmoid_loss = FLAGS.sigmoid, # identity_dim = FLAGS.identity_dim, # logging=True) elif FLAGS.model == 'LRmean_add': # Create model if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_3) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' # modified model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, #loss_node, #loss_node_count, minibatch.deg, layer_infos, aggregator_type="LRmean", concat=False, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # # model = SupervisedGraphsage(num_classes, placeholders, # features, # adj_info, # minibatch.deg, # layer_infos, # model_size=FLAGS.model_size, # sigmoid_loss = FLAGS.sigmoid, # identity_dim = FLAGS.identity_dim, # logging=True) elif FLAGS.model == 'logicmean': # Create model if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' # modified model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, #loss_node, #loss_node_count, minibatch.deg, layer_infos, aggregator_type='logicmean', concat=True, model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # elif FLAGS.model == 'attmean': # Create model if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) if FLAGS.samples_3 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2), SAGEInfo("node", sampler, FLAGS.samples_3, FLAGS.dim_2) ] elif FLAGS.samples_2 != 0: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] else: layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1) ] ''' ### 3 layer test layer_infos = [SAGEInfo("node", sampler, 50, FLAGS.dim_2), SAGEInfo("node", sampler, 25, FLAGS.dim_2), SAGEInfo("node", sampler, 10, FLAGS.dim_2)] ''' # modified model = SupervisedGraphsage( num_classes, placeholders, features, adj_info, #loss_node, #loss_node_count, minibatch.deg, layer_infos, aggregator_type='attmean', model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) # # model = SupervisedGraphsage(num_classes, placeholders, # features, # adj_info, # minibatch.deg, # layer_infos, # model_size=FLAGS.model_size, # sigmoid_loss = FLAGS.sigmoid, # identity_dim = FLAGS.identity_dim, # logging=True) elif FLAGS.model == 'gcn': if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, 2 * FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, 2 * FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="gcn", model_size=FLAGS.model_size, concat=False, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_seq': sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="seq", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_maxpool': if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) #sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="maxpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) elif FLAGS.model == 'graphsage_meanpool': if sampler_name == 'Uniform': sampler = UniformNeighborSampler(adj_info) elif sampler_name == 'ML': sampler = MLNeighborSampler(adj_info, features) elif sampler_name == 'FastML': sampler = FastMLNeighborSampler(adj_info, features) #sampler = UniformNeighborSampler(adj_info) layer_infos = [ SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1), SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2) ] model = SupervisedGraphsage(num_classes, placeholders, features, adj_info, minibatch.deg, layer_infos=layer_infos, aggregator_type="meanpool", model_size=FLAGS.model_size, sigmoid_loss=FLAGS.sigmoid, identity_dim=FLAGS.identity_dim, logging=True) else: raise Exception('Error: model name unrecognized.') config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement) config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION config.allow_soft_placement = True # Initialize session sess = tf.Session(config=config) merged = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(log_dir(sampler_name), sess.graph) # Save model saver = tf.train.Saver() model_path = './model/' + FLAGS.train_prefix.split( '/')[-1] + '-' + FLAGS.model_prefix + '-' + sampler_name model_path += "/{model:s}_{model_size:s}_{lr:0.4f}/".format( model=FLAGS.model, model_size=FLAGS.model_size, lr=FLAGS.learning_rate) if not os.path.exists(model_path): os.makedirs(model_path) # Init variables sess.run(tf.global_variables_initializer(), feed_dict={adj_info_ph: minibatch.adj}) # Restore params of ML sampler model if sampler_name == 'ML' or sampler_name == 'FastML': sampler_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="MLsampler") #pdb.set_trace() saver_sampler = tf.train.Saver(var_list=sampler_vars) sampler_model_path = './model/MLsampler-' + FLAGS.train_prefix.split( '/')[-1] + '-' + FLAGS.model_prefix sampler_model_path += "/{model:s}_{model_size:s}_{lr:0.4f}/".format( model=FLAGS.model, model_size=FLAGS.model_size, lr=FLAGS.learning_rate) saver_sampler.restore(sess, sampler_model_path + 'model.ckpt') # Train model total_steps = 0 avg_time = 0.0 epoch_val_costs = [] train_adj_info = tf.assign(adj_info, minibatch.adj) val_adj_info = tf.assign(adj_info, minibatch.test_adj) val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] ln_acc = sparse.csr_matrix((adj_shape[0], adj_shape[0]), dtype=np.float32) lnc_acc = sparse.csr_matrix((adj_shape[0], adj_shape[0]), dtype=np.int32) ln_acc = ln_acc.tolil() lnc_acc = lnc_acc.tolil() # # ln_acc = np.zeros([adj_shape[0], adj_shape[0]]) # lnc_acc = np.zeros([adj_shape[0], adj_shape[0]]) for epoch in range(FLAGS.epochs): minibatch.shuffle() iter = 0 print('Epoch: %04d' % (epoch + 1)) epoch_val_costs.append(0) #for j in range(2): while not minibatch.end(): # Construct feed dictionary feed_dict, labels = minibatch.next_minibatch_feed_dict() if feed_dict.values()[0] != FLAGS.batch_size: break feed_dict.update({placeholders['dropout']: FLAGS.dropout}) t = time.time() # Training step #outs = sess.run([merged, model.opt_op, model.loss, model.preds], feed_dict=feed_dict) outs = sess.run([ merged, model.opt_op, model.loss, model.preds, model.loss_node, model.loss_node_count, model.out_mean ], feed_dict=feed_dict) train_cost = outs[2] if iter % FLAGS.validate_iter == 0: # Validation sess.run(val_adj_info.op) if FLAGS.validate_batch_size == -1: val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) else: val_cost, val_f1_mic, val_f1_mac, duration = evaluate( sess, model, minibatch, FLAGS.validate_batch_size) # accumulate val results val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) # sess.run(train_adj_info.op) epoch_val_costs[-1] += val_cost if total_steps % FLAGS.print_every == 0: summary_writer.add_summary(outs[0], total_steps) # Print results avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1) # loss_node #import pdb #pdb.set_trace() # if epoch > 0.7*FLAGS.epochs: # ln = outs[-2].values # ln_idx = outs[-2].indices # ln_acc[ln_idx[:,0], ln_idx[:,1]] += ln # # # lnc = outs[-1].values # lnc_idx = outs[-1].indices # lnc_acc[lnc_idx[:,0], lnc_idx[:,1]] += lnc ln = outs[4].values ln_idx = outs[4].indices ln_acc[ln_idx[:, 0], ln_idx[:, 1]] += ln lnc = outs[5].values lnc_idx = outs[5].indices lnc_acc[lnc_idx[:, 0], lnc_idx[:, 1]] += lnc #pdb.set_trace() #idx = np.where(lnc_acc != 0) #loss_node_mean = (ln_acc[idx[0], idx[1]]).mean() #loss_node_count_mean = (lnc_acc[idx[0], idx[1]]).mean() if total_steps % FLAGS.print_every == 0: train_f1_mic, train_f1_mac = calc_f1(labels, outs[3]) print( "Iter:", '%04d' % iter, "train_loss=", "{:.5f}".format(train_cost), "train_f1_mic=", "{:.5f}".format(train_f1_mic), "train_f1_mac=", "{:.5f}".format(train_f1_mac), "val_loss=", "{:.5f}".format(val_cost), "val_f1_mic=", "{:.5f}".format(val_f1_mic), "val_f1_mac=", "{:.5f}".format(val_f1_mac), #"loss_node=", "{:.5f}".format(loss_node_mean), #"loss_node_count=", "{:.5f}".format(loss_node_count_mean), "time=", "{:.5f}".format(avg_time)) iter += 1 total_steps += 1 if total_steps > FLAGS.max_total_steps: break if total_steps > FLAGS.max_total_steps: break # Save model save_path = saver.save(sess, model_path + 'model.ckpt') print('model is saved at %s' % save_path) # Save loss node and count loss_node_path = './loss_node/' + FLAGS.train_prefix.split( '/')[-1] + '-' + FLAGS.model_prefix + '-' + sampler_name loss_node_path += "/{model:s}_{model_size:s}_{lr:0.4f}/".format( model=FLAGS.model, model_size=FLAGS.model_size, lr=FLAGS.learning_rate) if not os.path.exists(loss_node_path): os.makedirs(loss_node_path) loss_node = sparse.save_npz(loss_node_path + 'loss_node.npz', sparse.csr_matrix(ln_acc)) loss_node_count = sparse.save_npz(loss_node_path + 'loss_node_count.npz', sparse.csr_matrix(lnc_acc)) print('loss and count per node is saved at %s' % loss_node_path) # # save images of loss node and count # plt.imsave(loss_node_path + 'loss_node_mean.png', np.uint8(np.round(np.divide(ln_acc.todense()[:1024,:1024], lnc_acc.todense()[:1024,:1024]+1e-10))), cmap='jet', vmin=0, vmax=255) # plt.imsave(loss_node_path + 'loss_node_count.png', np.uint8(lnc_acc.todense()[:1024,:1024]), cmap='jet', vmin=0, vmax=255) # print("Validation per epoch in training") for ep in range(FLAGS.epochs): print("Epoch: %04d" % ep, " val_cost={:.5f}".format(val_cost_[ep]), " val_f1_mic={:.5f}".format(val_f1_mic_[ep]), " val_f1_mac={:.5f}".format(val_f1_mac_[ep]), " duration={:.5f}".format(duration_[ep])) print("Optimization Finished!") sess.run(val_adj_info.op) # full validation val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] for iter in range(10): val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) print("mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) # write validation results with open(log_dir(sampler_name) + "val_stats.txt", "w") as fp: for iter in range(10): fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(val_cost_[iter], val_f1_mic_[iter], val_f1_mac_[iter], duration_[iter])) fp.write( "mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) fp.write( "variance: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n" .format(np.var(val_cost_), np.var(val_f1_mic_), np.var(val_f1_mac_), np.var(duration_))) # test val_cost_ = [] val_f1_mic_ = [] val_f1_mac_ = [] duration_ = [] print("Writing test set stats to file (don't peak!)") # timeline if FLAGS.timeline == True: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() else: run_options = None run_metadata = None for iter in range(10): val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate( sess, model, minibatch, FLAGS.batch_size, run_options, run_metadata, test=True) #val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size, test=True) print("Full validation stats:", "loss=", "{:.5f}".format(val_cost), "f1_micro=", "{:.5f}".format(val_f1_mic), "f1_macro=", "{:.5f}".format(val_f1_mac), "time=", "{:.5f}".format(duration)) val_cost_.append(val_cost) val_f1_mic_.append(val_f1_mic) val_f1_mac_.append(val_f1_mac) duration_.append(duration) print("mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) # write test results with open(log_dir(sampler_name) + "test_stats.txt", "w") as fp: for iter in range(10): fp.write( "loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(val_cost_[iter], val_f1_mic_[iter], val_f1_mac_[iter], duration_[iter])) fp.write( "mean: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n". format(np.mean(val_cost_), np.mean(val_f1_mic_), np.mean(val_f1_mac_), np.mean(duration_))) fp.write( "variance: loss={:.5f} f1_micro={:.5f} f1_macro={:.5f} time={:.5f}\n" .format(np.var(val_cost_), np.var(val_f1_mic_), np.var(val_f1_mac_), np.var(duration_))) # create timeline object, and write it to a json if FLAGS.timeline == True: tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format(show_memory=True) with open(log_dir(sampler_name) + 'timeline.json', 'w') as f: print('timeline written at %s' % (log_dir(sampler_name) + 'timelnie.json')) f.write(ctf) sess.close() tf.reset_default_graph()