示例#1
0
def fit_gm_exp(adj, alpha, beta=1, c=0, n_init=5, norm=False):
    gm = GraphMatch(
        n_init=n_init, init_method="rand", max_iter=80, eps=0.05, shuffle_input=True
    )
    length = len(adj)
    match_mat = make_exp_match(length, alpha=alpha)
    if norm:
        match_mat = normalize_match(adj, match_mat)
    gm.fit(match_mat, adj)
    return gm.perm_inds_
示例#2
0
def fit_gm_exp(
    adj,
    alpha,
    beta=1,
    c=0,
    n_init=5,
    norm=False,
    max_iter=50,
    eps=0.05,
    n_jobs=1,
    verbose=0,
):
    warnings.filterwarnings("ignore")
    gm = GraphMatch(n_init=1,
                    init_method="rand",
                    max_iter=max_iter,
                    eps=eps,
                    shuffle_input=True)
    match_mat = make_exp_match(adj, alpha=alpha, beta=beta, c=c, norm=norm)

    seeds = np.random.choice(int(1e8), size=n_init)

    def _fit(seed):
        np.random.seed(seed)
        gm.fit(match_mat, adj)
        return gm.perm_inds_, gm.score_

    outs = Parallel(n_jobs=n_jobs,
                    verbose=verbose)(delayed(_fit)(s) for s in seeds)
    outs = list(zip(*outs))
    perms = np.array(outs[0])
    scores = np.array(outs[1])
    return perms, scores
        def run_sim(seed):
            A1, A2 = sbm_corr(block_members,
                              block_probs,
                              rho,
                              directed=directed,
                              loops=loops)
            node_shuffle_input = np.random.permutation(n)
            A2_shuffle = A2[np.ix_(node_shuffle_input, node_shuffle_input)]
            node_unshuffle_input = np.array(range(n))
            node_unshuffle_input[node_shuffle_input] = np.array(range(n))

            W1 = np.sort(random.sample(list(range(n)), i))
            W1 = W1.astype(int)
            W2 = np.array(node_unshuffle_input[W1])

            faq = GMP(gmp=True)
            faq = faq.fit(A1, A2_shuffle, W1, W2)
            return match_ratio(faq.perm_inds_, node_unshuffle_input)
示例#4
0
                cbar=False,
                title="P unshuffled")

    for init_weight in [0, 0.25, 0.5, 0.75, 0.9, 0.95, "random"]:

        import matplotlib.transforms as transforms

        n_verts = A1.shape[0]

        all_positions = []
        init_indicator = []

        gm = GraphMatch(
            n_init=n_init,
            init="barycenter",
            init_weight=init_weight,
            max_iter=20,
            shuffle_input=False,
            eps=eps,
        )
        gm.fit(A1, A2_shuffle)
        results = gm.results_
        progress = gm.progress_
        final_scores = progress.groupby("init_idx")["pseudoscore"].max()
        progress["final_score"] = progress["init_idx"].map(final_scores)
        progress["optimal"] = np.abs(
            (progress["final_score"] - max_score)) < 0.1
        p_found = progress["optimal"].mean()
        row = {"p_found": p_found, "init_weight": init_weight}
        rows.append(row)

init_weight_results = pd.DataFrame(rows)
示例#5
0
n_verts = adj.shape[0]

adjplot(adj, sort_class=labels, cbar=False, ax=axs[1], square=True)
axs[1].set_title("Adjacency matrix", pad=25)
plt.tight_layout()
stashfig("sbm" + basename)


# %% [markdown]
# ##

methods = [make_flat_match, make_linear_match, make_exp_match]
names = ["Flat", "Linear", "Exp"]

gm = GraphMatch(
    n_init=25, init_method="rand", max_iter=80, eps=0.05, shuffle_input=True
)
alpha = 0.005
match_mats = []
permutations = []
for method, name in zip(methods, names):
    print(name)
    match_mat = method(len(adj), alpha=alpha)
    match_mat = normalize_match(adj, match_mat)
    match_mats.append(match_mat)
    gm.fit(match_mat, adj)
    permutations.append(gm.perm_inds_)

# %% [markdown]
# ##
from src.hierarchy import signal_flow
示例#6
0
def run_gmp(seed):
    np.random.seed(seed)
    sgm = GMP(n_init=1, init_method="rand")
    sgm.fit(A1, A2_shuffle)
    return sgm.score_, sgm.perm_inds_
示例#7
0
# plot shuffled
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
heatmap(A1, ax=axs[0], cbar=False, title="Graph 1")
heatmap(A2_shuffle, ax=axs[1], cbar=False, title="Graph 2 shuffled")
heatmap(A1 - A2_shuffle,
        ax=axs[2],
        cbar=False,
        title="Diff (G1 - G2 shuffled)")

n_init = 100  # parameter for GMP

# run GMP in serial
currtime = time.time()

sgm = GMP(n_init=n_init, init_method="rand")
sgm = sgm.fit(A1, A2_shuffle)

A2_unshuffle = A2_shuffle[np.ix_(sgm.perm_inds_, sgm.perm_inds_)]

fig, axs = plt.subplots(1, 3, figsize=(10, 5))
heatmap(A1, ax=axs[0], cbar=False, title="Graph 1")
heatmap(A2_unshuffle, ax=axs[1], cbar=False, title="Graph 2 unshuffled")
heatmap(A1 - A2_unshuffle,
        ax=axs[2],
        cbar=False,
        title="Diff (G1 - G2 unshuffled)")

match_ratio = 1 - (
    np.count_nonzero(abs(sgm.perm_inds_ - node_unshuffle_input)) / n_verts)
print("Match Ratio (serial) ", match_ratio)
示例#8
0
 def run_gmp(seed):
     np.random.seed(seed)
     sgm = GraphMatch(n_init=1, init_method="rand", max_iter=100, eps=0.05)
     sgm.fit(match_mat, adj)
     return sgm.score_, sgm.perm_inds_