def run_sim(seed):
            A1, A2 = sbm_corr(block_members,
                              block_probs,
                              rho,
                              directed=directed,
                              loops=loops)
            node_shuffle_input = np.random.permutation(n)
            A2_shuffle = A2[np.ix_(node_shuffle_input, node_shuffle_input)]
            node_unshuffle_input = np.array(range(n))
            node_unshuffle_input[node_shuffle_input] = np.array(range(n))

            W1 = np.sort(random.sample(list(range(n)), i))
            W1 = W1.astype(int)
            W2 = np.array(node_unshuffle_input[W1])

            faq = GMP(gmp=True)
            faq = faq.fit(A1, A2_shuffle, W1, W2)
            return match_ratio(faq.perm_inds_, node_unshuffle_input)
示例#2
0
    def run_sim(seed):

        A1, A2 = sbm_corr(
            block_members, block_probs, rho, directed=directed, loops=loops
        )
        score = 0
        res_opt = None
        
        score_ss = 0
        res_opt_ss = None
        
        for j in range(t):
            res = quadratic_assignment_sim(A1,A2, sim=False, maximize=True, options={'seed':seed[j]})
            if res['score']>score:
                res_opt = res
                score = res['score']
            
            res = quadratic_assignment_sim(A1,A2, sim=True, maximize=True, options={'seed':seed[j]})
            if res['score']>score_ss:
                res_opt_ss = res
                score_ss = res['score']
                
        ratio = match_ratio(res_opt['col_ind'], n)
        score = res_opt['score']
        
        ratio_ss = match_ratio(res_opt_ss['col_ind'], n)
        score_ss = res_opt_ss['score']

        res = quadratic_assignment_sim(A1,A2, sim=False, maximize=True, options={'shuffle_input':False})
        ratio_opt = match_ratio(res['col_ind'], n)
        score_opt = res['score']

        res = quadratic_assignment_sim(A1,A2, sim=True, maximize=True, options={'shuffle_input':False})
        ratio_opt_ss = match_ratio(res['col_ind'], n)
        score_opt_ss = res['score']


        return ratio, score, ratio_ss, score_ss, ratio_opt, score_opt, ratio_opt_ss, score_opt_ss
示例#3
0
# ##

show_adjs = False
B = np.array([[0.3, 0.7], [0.05, 0.3]])
rho = 0.9
n_per_block = 10
n_blocks = len(B)
comm = n_blocks * [n_per_block]

n_init = 50
eps = 1.0
n_samples = 20

rows = []
for i in range(n_samples):
    A1, A2 = sbm_corr(comm, B, rho)
    max_score = np.trace(A1 @ A2.T)

    shuffle_inds = np.random.choice(len(A1), replace=False, size=len(A1))
    A2_shuffle = A2[np.ix_(shuffle_inds, shuffle_inds)]

    if show_adjs:
        fig, axs = plt.subplots(1, 4, figsize=(10, 5))
        heatmap(A1, ax=axs[0], cbar=False, title="Graph 1")
        heatmap(A2, ax=axs[1], cbar=False, title="Graph 2")
        heatmap(A1 - A2, ax=axs[2], cbar=False, title="Diff (G1 - G2)")
        heatmap(A2_shuffle, ax=axs[3], cbar=False, title="Graph 2 shuffled")

        P = np.zeros_like(A1)
        P[np.arange(len(P)), shuffle_inds] = 1
        fig, axs = plt.subplots(1, 4, figsize=(20, 5))
示例#4
0
block_probs = np.array([[0.7, 0.3, 0.4], [0.3, 0.7, 0.3], [0.4, 0.3, 0.7]])

# plot block probs
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
sns.heatmap(block_probs,
            cbar=False,
            annot=True,
            square=True,
            cmap="Reds",
            ax=ax)
ax.set_title("SBM block probabilities")

# generate graphs
A1, A2 = sbm_corr(block_members,
                  block_probs,
                  rho,
                  directed=directed,
                  loops=loops)
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
heatmap(A1, ax=axs[0], cbar=False, title="Graph 1")
heatmap(A2, ax=axs[1], cbar=False, title="Graph 2")
heatmap(A1 - A2, ax=axs[2], cbar=False, title="Diff (G1 - G2)")

# shuffle for testing
node_shuffle_input = np.random.permutation(n_verts)
A2_shuffle = A2[np.ix_(node_shuffle_input, node_shuffle_input)]
node_unshuffle_input = np.array(range(n_verts))
node_unshuffle_input[node_shuffle_input] = np.array(range(n_verts))

# plot shuffled
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
示例#5
0
        def run_sim(seed):

            A1, A2 = sbm_corr(block_members,
                              block_probs,
                              rho,
                              directed=directed,
                              loops=loops)
            score = 0
            res_opt = None

            score_ss = 0
            res_opt_ss = None

            ase = AdjacencySpectralEmbed(n_components=3, algorithm='truncated')
            Xhat1 = ase.fit_transform(A1)
            Xhat2 = ase.fit_transform(A2)
            if flip == 'median':
                xhh1, xhh2 = _median_sign_flips(Xhat1, Xhat2)
                S = xhh1 @ xhh2.T
            elif flip == 'jagt':
                sp = SeedlessProcrustes().fit(Xhat1, Xhat2)
                xhh1 = Xhat1 @ sp.Q
                xhh2 = Xhat2
                S = xhh1 @ xhh2.T
            else:
                S = None

            for j in range(t):
                res = quadratic_assignment_sim(A1,
                                               A2,
                                               True,
                                               options={'seed': seed[j]})
                if res['score'] > score:
                    res_opt = res
                    score = res['score']

                res = quadratic_assignment_sim(A1,
                                               A2,
                                               True,
                                               S,
                                               options={'seed': seed[j]})
                if res['score'] > score_ss:
                    res_opt_ss = res
                    score_ss = res['score']

            ratio = match_ratio(res_opt['col_ind'], n)
            score = res_opt['score']

            ratio_ss = match_ratio(res_opt_ss['col_ind'], n)
            score_ss = res_opt_ss['score']

            res = quadratic_assignment_sim(A1,
                                           A2,
                                           True,
                                           options={'shuffle_input': False})
            ratio_opt = match_ratio(res['col_ind'], n)
            score_opt = res['score']

            res = quadratic_assignment_sim(A1,
                                           A2,
                                           True,
                                           S,
                                           options={'shuffle_input': False})
            ratio_opt_ss = match_ratio(res['col_ind'], n)
            score_opt_ss = res['score']

            return ratio, score, ratio_ss, score_ss, ratio_opt, score_opt, ratio_opt_ss, score_opt_ss
示例#6
0
        def run_sim(seed):

            A1, A2 = sbm_corr(block_members,
                              block_probs,
                              rho,
                              directed=directed,
                              loops=loops)
            score_10 = 0
            res_10_opt = None

            score_3 = 0
            res_3_opt = None

            ase3 = AdjacencySpectralEmbed(n_components=3,
                                          algorithm='truncated')
            Xhat31 = ase3.fit_transform(A1)
            Xhat32 = ase3.fit_transform(A2)

            ase10 = AdjacencySpectralEmbed(n_components=10,
                                           algorithm='truncated')
            Xhat101 = ase10.fit_transform(A1)
            Xhat102 = ase10.fit_transform(A2)

            if flip == 'median':
                xhh31, xhh32 = _median_sign_flips(Xhat31, Xhat32)
                xhh101, xhh102 = _median_sign_flips(Xhat101, Xhat102)
            elif flip == 'jagt':
                sp3 = SeedlessProcrustes(init='sign_flips').fit(Xhat31, Xhat32)
                xhh31 = Xhat31 @ sp3.Q_
                xhh32 = Xhat32
                sp10 = SeedlessProcrustes(init='sign_flips').fit(
                    Xhat101, Xhat102)
                xhh101 = Xhat101 @ sp10.Q_
                xhh102 = Xhat102
            else:
                S = None

            if sim == 'mult':
                S3 = xhh31 @ xhh32.T
                S10 = xhh101 @ xhh102.T
            elif sim == 'pdist':
                S3 = pdist_youngser(xhh31, xhh32)
                S10 = pdist_youngser(xhh101, xhh102)

            for j in range(t):
                res = quadratic_assignment_sim(A1,
                                               A2,
                                               True,
                                               S3,
                                               options={'seed': seed[j]})
                if res['score'] > score_3:
                    res_3_opt = res
                    score_3 = res['score']

                res = quadratic_assignment_sim(A1,
                                               A2,
                                               True,
                                               S10,
                                               options={'seed': seed[j]})
                if res['score'] > score_10:
                    res_10_opt = res
                    score_10 = res['score']

            ratio_3 = match_ratio(res_3_opt['col_ind'], n)
            score_3 = res_3_opt['score']

            ratio_10 = match_ratio(res_10_opt['col_ind'], n)
            score_10 = res_10_opt['score']

            return ratio_3, score_3, ratio_10, score_10