def run_fit(seed, param_grid, directed, n_init, n_jobs, co_block):
    # run left
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    sbm_left_df = select_sbm(
        graph,
        param_grid,
        directed=directed,
        n_jobs=n_jobs,
        n_init=n_init,
        co_block=co_block,
    )
    save_obj(sbm_left_df, file_obs, "cosbm_left_df")

    # run right
    graph = load_drosophila_right()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    sbm_right_df = select_sbm(
        graph,
        param_grid,
        directed=directed,
        n_jobs=n_jobs,
        n_init=n_init,
        co_block=co_block,
    )
    save_obj(sbm_right_df, file_obs, "cosbm_right_df")

    return 0
def run_fit(seed, param_grid, directed, n_init, n_jobs):
    # run left
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    ddcsbm_left_df = select_dcsbm(
        graph,
        param_grid,
        directed=directed,
        degree_directed=False,
        n_jobs=n_jobs,
        n_init=n_init,
    )
    save_obj(ddcsbm_left_df, file_obs, "ddcsbm_left_df")

    # run right
    graph = load_drosophila_right()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    ddcsbm_right_df = select_dcsbm(
        graph,
        param_grid,
        directed=directed,
        degree_directed=False,
        n_jobs=n_jobs,
        n_init=n_init,
    )
    save_obj(ddcsbm_right_df, file_obs, "ddcsbm_right_df")

    return 0
def run_fit(seed, directed, n_components_range):
    # run left
    left_graph, labels = load_left()
    if not directed:
        left_graph = symmetrize(left_graph, method="avg")

    # run right
    right_graph, labels = load_right()
    if not directed:
        right_graph = symmetrize(right_graph, method="avg")

    outs = []
    for n_components in n_components_range:
        ldt = LatentDistributionTest(n_components=n_components,
                                     n_bootstraps=500)
        ldt.fit(left_graph, right_graph)
        result = {}
        result["p-value"] = ldt.p_
        result["sample-t"] = ldt.sample_T_statistic_
        result["n_components"] = n_components
        outs.append(result)
        print(f"Done with {n_components}")

    out_df = pd.DataFrame(outs)
    save_obj(out_df, file_obs, "ldt_df")
    return 0
示例#4
0
def to_minigraph(
    adj,
    labels,
    drop_neg=True,
    remove_diag=True,
    size_scaler=1,
    use_counts=False,
    use_weights=True,
    color_map=None,
):
    # convert the adjacency and a partition to a minigraph based on SBM probs
    prob_df = get_blockmodel_df(
        adj, labels, return_counts=use_counts, use_weights=use_weights
    )
    if drop_neg and ("-1" in prob_df.index):
        prob_df.drop("-1", axis=0, inplace=True)
        prob_df.drop("-1", axis=1, inplace=True)

    if remove_diag:
        adj = prob_df.values
        adj -= np.diag(np.diag(adj))
        prob_df.data = prob_df

    g = nx.from_pandas_adjacency(prob_df, create_using=nx.DiGraph())
    uni_labels, counts = np.unique(labels, return_counts=True)

    # add size attribute base on number of vertices
    size_map = dict(zip(uni_labels, size_scaler * counts))
    nx.set_node_attributes(g, size_map, name="Size")

    # add signal flow attribute (for the minigraph itself)
    mini_adj = nx.to_numpy_array(g, nodelist=uni_labels)
    node_signal_flow = signal_flow(mini_adj)
    sf_map = dict(zip(uni_labels, node_signal_flow))
    nx.set_node_attributes(g, sf_map, name="Signal Flow")

    # add spectral properties
    sym_adj = symmetrize(mini_adj)
    n_components = 10
    latent = AdjacencySpectralEmbed(n_components=n_components).fit_transform(sym_adj)
    for i in range(n_components):
        latent_dim = latent[:, i]
        lap_map = dict(zip(uni_labels, latent_dim))
        nx.set_node_attributes(g, lap_map, name=f"AdjEvec-{i}")

    # add spring layout properties
    pos = nx.spring_layout(g)
    spring_x = {}
    spring_y = {}
    for key, val in pos.items():
        spring_x[key] = val[0]
        spring_y[key] = val[1]
    nx.set_node_attributes(g, spring_x, name="Spring-x")
    nx.set_node_attributes(g, spring_y, name="Spring-y")

    # add colors
    if color_map is None:
        color_map = dict(zip(uni_labels, cc.glasbey_light))
    nx.set_node_attributes(g, color_map, name="Color")
    return g
def run_fit(
    seed,
    n_components_try_range,
    n_components_try_rdpg,
    n_block_try_range,
    directed,
    n_init,
    embed_kws_try_range,
    n_jobs,
):
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)

    np.random.seed(seed)

    param_grid = {
        "n_components": n_components_try_range,
        "n_blocks": n_block_try_range,
        "embed_kws": embed_kws_try_range,
    }
    out_df = select_dcsbm(
        graph,
        param_grid,
        directed=directed,
        degree_directed=False,
        n_jobs=n_jobs,
        n_init=n_init,
    )

    print(out_df.head())

    save_obj(out_df, file_obs, "grid_search_out")
    return 0
示例#6
0
def run_fit(seed, param_grid, directed, n_init, n_jobs):
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)

    np.random.seed(seed)

    dcsbm_out_df = select_dcsbm(
        graph,
        param_grid,
        directed=directed,
        degree_directed=False,
        n_jobs=n_jobs,
        n_init=n_init,
    )

    ddcsbm_out_df = select_dcsbm(
        graph,
        param_grid,
        directed=directed,
        degree_directed=True,
        n_jobs=n_jobs,
        n_init=n_init,
    )

    save_obj(dcsbm_out_df, file_obs, "dcsbm_out_df")
    save_obj(ddcsbm_out_df, file_obs, "ddcsbm_out_df")
    return 0
示例#7
0
def run_fit(
    seed,
    n_components_try_range,
    n_components_try_rdpg,
    n_block_try_range,
    directed,
    n_sims_sbm,
):
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)

    connected = is_fully_connected(graph)

    if not connected:
        heatmap(graph)
        plt.show()
        raise ValueError("input graph not connected")

    np.random.seed(seed)

    columns = columns = [
        "n_params_gmm",
        "n_params_sbm",
        "rss",
        "mse",
        "score",
        "n_components_try",
        "n_block_try",
        "sim_ind",
    ]
    sbm_master_df = pd.DataFrame(columns=columns)
    for i in range(n_sims_sbm):
        sbm_df = select_sbm(graph,
                            n_components_try_range,
                            n_block_try_range,
                            directed=directed)
        sbm_df["sim_ind"] = i
        sbm_master_df = sbm_master_df.append(sbm_df,
                                             ignore_index=True,
                                             sort=True)

    rdpg_df = select_rdpg(graph, n_components_try_rdpg, directed)

    def metric(assignments, *args):
        return -compute_mse_from_assignments(
            assignments, graph, directed=directed)

    tsbm_master_df = select_sbm(
        graph,
        n_components_try_range,
        n_block_try_range,
        directed=directed,
        method="bc-metric",
        metric=metric,
    )
    return (sbm_master_df, rdpg_df, tsbm_master_df)
示例#8
0
def levenshtein(str_paths):
    dist_mat = np.zeros((len(str_paths), len(str_paths)))
    lev = textdistance.Levenshtein(qval=None)
    for i, sp1 in enumerate(str_paths):
        for j, sp2 in enumerate(str_paths[i + 1:]):
            dist = lev.distance(sp1, sp2) / max(sp1.count(" "), sp2.count(" "))
            dist_mat[i, j] = dist
    dist_mat = symmetrize(dist_mat, method="triu")
    return dist_mat
示例#9
0
def run_fit(seed, directed):
    # run left
    graph, labels = load_left()
    print(labels)
    if not directed:
        graph = symmetrize(graph, method="avg")

    # fit SBM
    sbm = SBMEstimator(directed=True, loops=False)
    sbm_left_df = fit_a_priori(sbm, graph, labels)
    print(sbm_left_df["n_params"])
    save_obj(sbm_left_df, file_obs, "sbm_left_df")

    # fit DCSBM
    dcsbm = DCSBMEstimator(directed=True, loops=False, degree_directed=False)
    dcsbm_left_df = fit_a_priori(dcsbm, graph, labels)
    save_obj(dcsbm_left_df, file_obs, "dcsbm_left_df")

    # fit dDCSBM
    ddcsbm = DCSBMEstimator(directed=True, loops=False, degree_directed=True)
    ddcsbm_left_df = fit_a_priori(ddcsbm, graph, labels)
    save_obj(ddcsbm_left_df, file_obs, "ddcsbm_left_df")

    # run right
    graph, labels = load_right()
    if not directed:
        graph = symmetrize(graph, method="avg")

    # fit SBM
    sbm = SBMEstimator(directed=True, loops=False)
    sbm_right_df = fit_a_priori(sbm, graph, labels)
    save_obj(sbm_right_df, file_obs, "sbm_right_df")

    # fit DCSBM
    dcsbm = DCSBMEstimator(directed=True, loops=False, degree_directed=False)
    dcsbm_right_df = fit_a_priori(dcsbm, graph, labels)
    save_obj(dcsbm_right_df, file_obs, "dcsbm_right_df")

    # fit dDCSBM
    ddcsbm = DCSBMEstimator(directed=True, loops=False, degree_directed=True)
    ddcsbm_right_df = fit_a_priori(ddcsbm, graph, labels)
    save_obj(ddcsbm_right_df, file_obs, "ddcsbm_right_df")

    return 0
def run_fit(seed, param_grid, directed, n_jobs):
    np.random.seed(seed)

    # run left
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    rdpg_left_df = select_rdpg(graph, param_grid, directed=directed, n_jobs=n_jobs)
    save_obj(rdpg_left_df, file_obs, "rdpg_left_df")

    # run right
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)
    rdpg_right_df = select_rdpg(graph, param_grid, directed=directed, n_jobs=n_jobs)
    save_obj(rdpg_right_df, file_obs, "rdpg_right_df")

    return 0
def run_fit(seed, directed, n_components_range):
    # run left
    left_graph, labels = load_left()
    if not directed:
        left_graph = symmetrize(left_graph, method="avg")

    # run right
    right_graph, labels = load_right()
    if not directed:
        right_graph = symmetrize(right_graph, method="avg")

    def fit(n_components):
        # np.random.seed(seed)
        return fit_ldt(left_graph, right_graph, n_components)

    outs = Parallel(n_jobs=-2, verbose=5)(delayed(fit)(n) for n in n_components_range)

    out_df = pd.DataFrame(outs)
    save_obj(out_df, file_obs, "ldt_df")
    return 0
示例#12
0
def run_fit(
    seed,
    n_components_try_range,
    n_components_try_rdpg,
    n_block_try_range,
    directed,
    n_sims_sbm,
):
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)

    connected = is_fully_connected(graph)

    if not connected:
        heatmap(graph)
        plt.show()
        raise ValueError("input graph not connected")

    np.random.seed(seed)

    columns = columns = [
        "n_params_gmm",
        "n_params_sbm",
        "rss",
        "mse",
        "score",
        "n_components_try",
        "n_block_try",
        "sim_ind",
    ]
    sbm_master_df = pd.DataFrame(columns=columns)
    for i in range(n_sims_sbm):
        sbm_df = select_sbm(
            graph,
            n_components_try_range,
            n_block_try_range,
            directed=directed,
            rank="sweep",
        )
        sbm_df["sim_ind"] = i
        sbm_master_df = sbm_master_df.append(sbm_df,
                                             ignore_index=True,
                                             sort=True)

    save_obj(sbm_master_df, file_obs, "sbm_master_df")
    return 0
示例#13
0
def add_attributes(
    g,
    drop_neg=True,
    remove_diag=True,
    size_scaler=1,
    use_counts=False,
    use_weights=True,
    color_map=None,
):
    nodelist = list(g.nodes())

    # add spectral properties
    sym_adj = symmetrize(nx.to_numpy_array(g, nodelist=nodelist))
    n_components = 10
    latent = AdjacencySpectralEmbed(
        n_components=n_components).fit_transform(sym_adj)
    for i in range(n_components):
        latent_dim = latent[:, i]
        lap_map = dict(zip(nodelist, latent_dim))
        nx.set_node_attributes(g, lap_map, name=f"AdjEvec-{i}")

    # add spring layout properties
    pos = nx.spring_layout(g)
    spring_x = {}
    spring_y = {}
    for key, val in pos.items():
        spring_x[key] = val[0]
        spring_y[key] = val[1]
    nx.set_node_attributes(g, spring_x, name="Spring-x")
    nx.set_node_attributes(g, spring_y, name="Spring-y")

    # add colors
    # nx.set_node_attributes(g, color_map, name="Color")
    for node, data in g.nodes(data=True):
        c = data["cell_class"]
        color = CLASS_COLOR_DICT[c]
        data["color"] = color

    # add size attribute base on number of edges
    size_map = dict(path_graph.degree(weight="weight"))
    nx.set_node_attributes(g, size_map, name="Size")

    return g
示例#14
0
def run_fit(seed, n_components_try_range, n_components_try_rdpg,
            n_block_try_range, directed):
    graph = load_drosophila_left()
    if not directed:
        graph = symmetrize(graph, method="avg")
    graph = binarize(graph)

    connected = is_fully_connected(graph)

    if not connected:
        heatmap(graph)
        plt.show()
        raise ValueError("input graph not connected")

    np.random.seed(seed)

    sbm_df = select_sbm(graph,
                        n_components_try_range,
                        n_block_try_range,
                        directed=directed)
    rdpg_df = select_rdpg(graph, n_components_try_rdpg, directed)
    return (sbm_df, rdpg_df)
示例#15
0
def _load_dataset(path, n_nodes, ptr=None):
    file = np.load(path)
    X = file["X"]
    y = file["y"].astype(int)

    n_samples = X.shape[0]

    y[y == -1] = 0

    idx = np.triu_indices(n_nodes, k=1)

    X_graphs = np.zeros((n_samples, n_nodes, n_nodes))

    for i, x in enumerate(X):
        X_graphs[i][idx] = x
        X_graphs[i] = symmetrize(X_graphs[i], "triu")

    if ptr is not None:
        X_graphs = X_graphs - X_graphs.min(axis=(1, 2)).reshape(-1, 1, 1)

        for i, x in enumerate(X_graphs):
            X_graphs[i] = pass_to_ranks(X_graphs[i])

    return X_graphs, y
示例#16
0
    figsize=(20, 15),
    sharey=True,
    gridspec_kw=dict(width_ratios=[0.25, 0.75], wspace=0),
)
mid_map = draw_leaf_dendrogram(mg.meta,
                               axs[0],
                               lowest_level=lowest_level,
                               draw_labels=False)
key_order = list(mid_map.keys())

compartment = "dendrite"
direction = "postsynaptic"
foldername = "160.1-BDP-morpho-dcorr"
filename = f"test-statslvl={level}-compartment={compartment}-direction={direction }-method=subsample-n_sub=96-max_samp=500"
stat_df = readcsv(filename, foldername=foldername, index_col=0)
sym_vals = symmetrize(stat_df.values, method="triu")
stat_df = pd.DataFrame(data=sym_vals,
                       index=stat_df.index,
                       columns=stat_df.index)
ordered_stat_df = stat_df.loc[key_order, key_order]
sns.set_context("talk")
sns.heatmap(ordered_stat_df, ax=axs[1], cbar=False, cmap="RdBu_r", center=0)
axs[1].invert_yaxis()
axs[1].invert_xaxis()
axs[1].set_xticklabels([])

remove_shared_ax(axs[0])
remove_shared_ax(axs[1])
axs[1].set_yticks(np.arange(len(key_order)) + 0.5)
axs[1].set_yticklabels(key_order)
axs[1].yaxis.tick_right()
示例#17
0
def run_experiment(graph_type=None,
                   threshold=None,
                   res=None,
                   binarize=None,
                   seed=None,
                   param_key=None):
    # common names
    if BLIND:
        basename = f"{param_key}-"
        title = param_key
    else:
        basename = f"louvain-res{res}-t{threshold}-{graph_type}-"
        title = f"Louvain, {graph_type}, res = {res}, threshold = {threshold}"

    np.random.seed(seed)

    # load and preprocess the data
    mg = load_metagraph(graph_type, version=BRAIN_VERSION)
    mg = preprocess(
        mg,
        threshold=threshold,
        sym_threshold=True,
        remove_pdiff=True,
        binarize=binarize,
    )
    adj = mg.adj
    adj = symmetrize(adj, method="avg")
    mg = MetaGraph(adj, mg.meta)
    g_sym = mg.g
    skeleton_labels = np.array(list(g_sym.nodes()))
    partition, modularity = run_louvain(g_sym, res, skeleton_labels)

    partition_series = pd.Series(partition, index=skeleton_labels)
    partition_series.name = param_key

    if SAVEFIGS:
        # get out some metadata
        class_label_dict = nx.get_node_attributes(g_sym, "Merge Class")
        class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict))
        lineage_label_dict = nx.get_node_attributes(g_sym, "lineage")
        lineage_labels = np.array(
            itemgetter(*skeleton_labels)(lineage_label_dict))
        lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels)
        classlin_labels, color_dict, hatch_dict = augment_classes(
            class_labels, lineage_labels)

        # TODO then sort all of them by proportion of sensory/motor
        # barplot by merge class and lineage
        _, _, order = barplot_text(
            partition,
            classlin_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=hatch_dict,
            return_order=True,
        )
        stashfig(basename + "barplot-mergeclasslin-props")
        category_order = np.unique(partition)[order]

        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=True,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-props")
        fig, axs = barplot_text(
            partition,
            class_labels,
            color_dict=color_dict,
            plot_proportions=False,
            norm_bar_width=False,
            figsize=(24, 18),
            title=title,
            hatch_dict=None,
            category_order=category_order,
        )
        stashfig(basename + "barplot-mergeclass-counts")

        # TODO add gridmap

        counts = False
        weights = False
        prob_df = get_blockmodel_df(mg.adj,
                                    partition,
                                    return_counts=counts,
                                    use_weights=weights)
        prob_df = prob_df.reindex(category_order, axis=0)
        prob_df = prob_df.reindex(category_order, axis=1)
        probplot(100 * prob_df,
                 fmt="2.0f",
                 figsize=(20, 20),
                 title=title,
                 font_scale=0.7)
        stashfig(basename + f"probplot-counts{counts}-weights{weights}")

    return partition_series, modularity
示例#18
0
# %% [markdown]
# #
from src.data import load_networkx, load_everything
import networkx as nx
from graspy.utils import binarize, symmetrize

graph = load_networkx("G")

nx.algorithms.diameter(graph)

# %% [markdown]
# #
adj = load_everything("G")
adj = symmetrize(adj, "avg")
graph = nx.from_numpy_array(adj)
nx.algorithms.diameter(graph)
# %% [markdown]
# #
adj = load_everything("Gad")
adj = symmetrize(adj, "avg")
graph = nx.from_numpy_array(adj)
nx.algorithms.diameter(graph)
示例#19
0
    labels=meta["merge_class"].values,
    left_pair_inds=lp_inds,
    right_pair_inds=rp_inds,
)

# %% [markdown]
# ##
from graspy.utils import symmetrize

# manifold = TSNE(metric="cosine")
# tsne_embed = tsne.fit_transform(U)
manifold = ClassicalMDS(n_components=U.shape[1] - 1,
                        dissimilarity="precomputed")
# manifold = MDS(n_components=2, dissimilarity="precomputed")
# manifold = Isomap(n_components=2, metric="precomputed")
pdist = symmetrize(pairwise_distances(U, metric="cosine"))
manifold_embed = manifold.fit_transform(pdist)

plot_pairs(
    manifold_embed,
    labels=meta["merge_class"].values,
    left_pair_inds=lp_inds,
    right_pair_inds=rp_inds,
)

# %% [markdown]
# ##

fig, ax = plt.subplots(1, 1, figsize=(10, 10))
plot_df = pd.DataFrame(data=manifold_embed)
plot_df["merge_class"] = meta["merge_class"].values
示例#20
0
nw_scores = np.zeros((len(seqs), len(seqs)))

aligner = GlobalSequenceAligner(DistScoring(pdist), 1000 - med * 1000)
for i in tqdm(range(len(seqs))):
    for j in range(i, len(seqs)):
        score, encodeds = aligner.align(seqs[i], seqs[j], backtrace=True)
        s = score / (1000 * max(len(seqs[i]), len(seqs[j])))
        nw_scores[i, j] = s

# %% [markdown]
# ##
from graspy.utils import symmetrize

sns.heatmap(nw_scores)
nw_scores = symmetrize(nw_scores, "triu")
nw_dists = 1 - nw_scores
# %% [markdown]
# ##

fig, ax = plt.subplots(1, 1, figsize=(6, 6))
sns.heatmap(nw_dists)

Z = linkage(squareform(nw_dists), method="average")
sns.clustermap(nw_dists, row_linkage=Z, col_linkage=Z)

# %% [markdown]
# ##
pal = sns.color_palette("husl", n_colors=max(map(len, seqs)))

# %% [markdown]
示例#21
0
def _process_metagraph(mg, temp_loc):
    adj = mg.adj
    adj = symmetrize(adj, method="avg")
    mg = MetaGraph(adj, mg.meta)
    nx.write_graphml(mg.g, temp_loc)
from graspy.inference import LatentDistributionTest
from graspy.simulations import sbm
from graspy.utils import symmetrize
from pandas import DataFrame
from joblib import Parallel, delayed

warnings.filterwarnings("ignore")

# get where we are just to save output figure
folderpath = Path(__file__.replace(basename(__file__), ""))
savepath = folderpath / "outputs"

np.random.seed(8888)

B = [[0.5, 0.2], [0.2, 0.05]]
B = symmetrize(B)
k = 2
tests = 1
start = 50
stop = 500
diff1 = 50
diff2 = 100
reps = 10
alpha = 0.05
ns = []
ms = []
newms = []
error_list = []
temp = []

for n in range(start, stop, diff1):
示例#23
0
def motif_matching(
    paths,
    ID,
    atlas,
    namer_dir,
    name_list,
    metadata_list,
    multigraph_list_all,
    graph_path_list_all,
    rsn=None,
):
    import networkx as nx
    import numpy as np
    import glob
    import pickle
    from pynets.core import thresholding
    from pynets.stats.netmotifs import compare_motifs
    from sklearn.metrics.pairwise import cosine_similarity
    from pynets.stats.netstats import community_resolution_selection
    from graspy.utils import remove_loops, symmetrize, get_lcc
    from pynets.core.nodemaker import get_brainnetome_node_attributes

    [struct_graph_path, func_graph_path] = paths
    struct_mat = np.load(struct_graph_path)
    func_mat = np.load(func_graph_path)

    [struct_coords, struct_labels, struct_label_intensities] = \
        get_brainnetome_node_attributes(glob.glob(
        f"{str(Path(struct_graph_path).parent.parent)}/nodes/*.json"),
        struct_mat.shape[0])

    [func_coords, func_labels, func_label_intensities] = \
        get_brainnetome_node_attributes(glob.glob(
        f"{str(Path(func_graph_path).parent.parent)}/nodes/*.json"),
        func_mat.shape[0])

    # Find intersecting nodes across modalities (i.e. assuming the same
    # parcellation, but accomodating for the possibility of dropped nodes)
    diff1 = list(set(struct_label_intensities) - set(func_label_intensities))
    diff2 = list(set(func_label_intensities) - set(struct_label_intensities))
    G_struct = nx.from_numpy_array(struct_mat)
    G_func = nx.from_numpy_array(func_mat)

    bad_idxs = []
    for val in diff1:
        bad_idxs.append(struct_label_intensities.index(val))
        bad_idxs = sorted(list(set(bad_idxs)), reverse=True)
        if type(struct_coords) is np.ndarray:
            struct_coords = list(tuple(x) for x in struct_coords)
    for j in bad_idxs:
        G_struct.remove_node(j)
        print(f"Removing: {(struct_labels[j], struct_coords[j])}...")
        del struct_labels[j], struct_coords[j]

    bad_idxs = []
    for val in diff2:
        bad_idxs.append(func_label_intensities.index(val))
        bad_idxs = sorted(list(set(bad_idxs)), reverse=True)
        if type(func_coords) is np.ndarray:
            func_coords = list(tuple(x) for x in func_coords)
    for j in bad_idxs:
        G_func.remove_node(j)
        print(f"Removing: {(func_labels[j], func_coords[j])}...")
        del func_labels[j], func_coords[j]

    struct_mat = nx.to_numpy_array(G_struct)
    func_mat = nx.to_numpy_array(G_func)

    struct_mat = thresholding.autofix(symmetrize(remove_loops(struct_mat)))

    func_mat = thresholding.autofix(symmetrize(remove_loops(func_mat)))

    if func_mat.shape == struct_mat.shape:
        func_mat[~struct_mat.astype("bool")] = 0
        struct_mat[~func_mat.astype("bool")] = 0
        print(
            "Edge disagreements after matching: ",
            sum(sum(abs(func_mat - struct_mat))),
        )

        metadata = {}
        assert (
            len(struct_coords)
            == len(struct_labels)
            == len(func_coords)
            == len(func_labels)
            == func_mat.shape[0]
        )
        metadata["coords"] = struct_coords
        metadata["labels"] = struct_labels
        metadata_list.append(metadata)

        struct_mat = np.maximum(struct_mat, struct_mat.T)
        func_mat = np.maximum(func_mat, func_mat.T)
        struct_mat = thresholding.standardize(struct_mat)
        func_mat = thresholding.standardize(func_mat)

        struct_node_comm_aff_mat = community_resolution_selection(
            nx.from_numpy_matrix(np.abs(struct_mat))
        )[1]

        func_node_comm_aff_mat = community_resolution_selection(
            nx.from_numpy_matrix(np.abs(func_mat))
        )[1]

        struct_comms = []
        for i in np.unique(struct_node_comm_aff_mat):
            struct_comms.append(struct_node_comm_aff_mat == i)

        func_comms = []
        for i in np.unique(func_node_comm_aff_mat):
            func_comms.append(func_node_comm_aff_mat == i)

        sims = cosine_similarity(struct_comms, func_comms)
        try:
            struct_comm = struct_comms[np.argmax(sims, axis=0)[0]]
        except BaseException:
            print('Matching by structural communities failed...')
            struct_comm = struct_mat
        try:
            func_comm = func_comms[np.argmax(sims, axis=0)[0]]
        except BaseException:
            print('Matching by functional communities failed...')
            func_comm = func_mat

        comm_mask = np.equal.outer(struct_comm, func_comm).astype(bool)

        try:
            assert comm_mask.shape == struct_mat.shape == func_mat.shape
        except AssertionError as e:
            e.args += (comm_mask, comm_mask.shape, struct_mat,
                       struct_mat.shape, func_mat, func_mat.shape)

        try:
            struct_mat[~comm_mask] = 0
        except BaseException:
            print('Skipping community masking...')
        try:
            func_mat[~comm_mask] = 0
        except BaseException:
            print('Skipping community masking...')

        struct_name = struct_graph_path.split("/rawgraph_"
                                              )[-1].split(".npy")[0]
        func_name = func_graph_path.split("/rawgraph_")[-1].split(".npy")[0]
        name = f"sub-{ID}_{atlas}_mplx_Layer-1_{struct_name}_" \
               f"Layer-2_{func_name}"
        name_list.append(name)
        struct_mat = np.maximum(struct_mat, struct_mat.T)
        func_mat = np.maximum(func_mat, func_mat.T)
        try:
            [mldict, g_dict] = compare_motifs(
                struct_mat, func_mat, name, namer_dir)
        except BaseException:
            print(f"Adaptive thresholding by motif comparisons failed "
                  f"for {name}. This usually happens when no motifs are found")
            return [], [], [], []

        multigraph_list_all.append(list(mldict.values())[0])
        graph_path_list = []
        for thr in list(g_dict.keys()):
            multigraph_path_list_dict = {}
            [struct, func] = g_dict[thr]
            struct_out = f"{namer_dir}/struct_{atlas}_{struct_name}.npy"
            func_out = f"{namer_dir}/struct_{atlas}_{func_name}_" \
                       f"motif-{thr}.npy"
            np.save(struct_out, struct)
            np.save(func_out, func)
            multigraph_path_list_dict[f"struct_{atlas}_{thr}"] = struct_out
            multigraph_path_list_dict[f"func_{atlas}_{thr}"] = func_out
            graph_path_list.append(multigraph_path_list_dict)
        graph_path_list_all.append(graph_path_list)
    else:
        print(
            f"Skipping {rsn} rsn, since structural and functional graphs are "
            f"not identical shapes."
        )

    return name_list, metadata_list, multigraph_list_all, graph_path_list_all
示例#24
0
def quick_embed_viewer(embed,
                       labels=None,
                       lp_inds=None,
                       rp_inds=None,
                       left_right_indexing=False):
    if left_right_indexing:
        lp_inds = np.arange(len(embed) // 2)
        rp_inds = np.arange(len(embed) // 2) + len(embed) // 2

    fig, axs = plt.subplots(3, 2, figsize=(20, 30))

    cmds = ClassicalMDS(n_components=2)
    cmds_euc = cmds.fit_transform(embed)
    plot_df = pd.DataFrame(data=cmds_euc)
    plot_df["labels"] = labels
    plot_kws = dict(
        x=0,
        y=1,
        hue="labels",
        palette=CLASS_COLOR_DICT,
        legend=False,
        s=20,
        linewidth=0.5,
        alpha=0.7,
    )
    ax = axs[0, 0]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("CMDS o euclidean")

    cmds = ClassicalMDS(n_components=2, dissimilarity="precomputed")
    pdist = symmetrize(pairwise_distances(embed, metric="cosine"))
    cmds_cos = cmds.fit_transform(pdist)
    plot_df[0] = cmds_cos[:, 0]
    plot_df[1] = cmds_cos[:, 1]
    ax = axs[0, 1]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("CMDS o cosine")

    tsne = TSNE(metric="euclidean")
    tsne_euc = tsne.fit_transform(embed)
    plot_df[0] = tsne_euc[:, 0]
    plot_df[1] = tsne_euc[:, 1]
    ax = axs[1, 0]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("TSNE o euclidean")

    tsne = TSNE(metric="precomputed")
    tsne_cos = tsne.fit_transform(pdist)
    plot_df[0] = tsne_cos[:, 0]
    plot_df[1] = tsne_cos[:, 1]
    ax = axs[1, 1]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("TSNE o cosine")

    umap = UMAP(metric="euclidean", n_neighbors=30, min_dist=1)
    umap_euc = umap.fit_transform(embed)
    plot_df[0] = umap_euc[:, 0]
    plot_df[1] = umap_euc[:, 1]
    ax = axs[2, 0]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("UMAP o euclidean")

    umap = UMAP(metric="cosine", n_neighbors=30, min_dist=1)
    umap_cos = umap.fit_transform(embed)
    plot_df[0] = umap_cos[:, 0]
    plot_df[1] = umap_cos[:, 1]
    ax = axs[2, 1]
    sns.scatterplot(data=plot_df, ax=ax, **plot_kws)
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )
    ax.set_title("UMAP o cosine")
示例#25
0
from graspy.embed import AdjacencySpectralEmbed
from graspy.models import EREstimator, RDPGEstimator, SBEstimator
from graspy.plot import heatmap, pairplot
import pandas as pd

#%% Set up some simulations
from graspy.simulations import p_from_latent, sample_edges
from graspy.utils import binarize, symmetrize

## Load data
sns.set_context("talk")
left_adj, cell_labels = load_drosophila_left(return_labels=True)
left_adj_uw = left_adj.copy()
left_adj_uw[left_adj_uw > 0] = 1

left_adj_uw = symmetrize(left_adj_uw, method="avg")
left_adj_uw = binarize(left_adj_uw)


def _check_common_inputs(
    figsize=None,
    height=None,
    title=None,
    context=None,
    font_scale=None,
    legend_name=None,
):
    # Handle figsize
    if figsize is not None:
        if not isinstance(figsize, tuple):
            msg = "figsize must be a tuple, not {}.".format(type(figsize))
示例#26
0
for comm in communities:
    comm_mg = mg.copy()
    ids = partition[partition == comm].index
    inds = comm_mg.meta.index.isin(ids)
    comm_mg = comm_mg.reindex(inds)
    is_al = comm_mg.meta["Merge Class"].isin(al_classes)
    heatmap(
        comm_mg.adj,
        inner_hier_labels=comm_mg["Merge Class"],
        outer_hier_labels=is_al,
        hier_label_fontsize=7,
        figsize=(20, 20),
        cbar=False,
    )
    adj = comm_mg.adj.copy()
    adj = symmetrize(adj, method="avg")
    sym_mg = MetaGraph(adj, comm_mg.meta)
    g_sym = sym_mg.g
    skeleton_labels = np.array(list(g_sym.nodes()))
    sub_partition, modularity = run_louvain(g_sym, 1, skeleton_labels)
    sub_partition = pd.Series(data=sub_partition, index=skeleton_labels)
    sub_partition.name = "sub-partition"
    sub_partition = sub_partition.reindex(comm_mg.meta.index)
    heatmap(
        comm_mg.adj,
        inner_hier_labels=sub_partition.values,
        hier_label_fontsize=7,
        figsize=(20, 20),
        cbar=False,
        sort_nodes=True,
    )
示例#27
0
                                  pred_labels,
                                  use_weights=True,
                                  return_counts=False)
plt.figure(figsize=(20, 20))
sns.heatmap(blockmodel_df, cmap="Reds")

g = nx.from_pandas_adjacency(blockmodel_df, create_using=nx.DiGraph())
uni_labels, counts = np.unique(pred_labels, return_counts=True)
size_scaler = 5
size_map = dict(zip(uni_labels, size_scaler * counts))
nx.set_node_attributes(g, size_map, name="Size")
mini_adj = nx.to_numpy_array(g, nodelist=uni_labels)
node_signal_flow = signal_flow(mini_adj)
sf_map = dict(zip(uni_labels, node_signal_flow))
nx.set_node_attributes(g, sf_map, name="Signal Flow")
sym_adj = symmetrize(mini_adj)
node_lap = LaplacianSpectralEmbed(n_components=1).fit_transform(sym_adj)
node_lap = np.squeeze(node_lap)
lap_map = dict(zip(uni_labels, node_lap))
nx.set_node_attributes(g, lap_map, name="Laplacian-2")
color_map = dict(zip(uni_labels, cc.glasbey_light))
nx.set_node_attributes(g, color_map, name="Color")
g.nodes(data=True)
nx.write_graphml(g, f"maggot_models/notebooks/outs/{FNAME}/mini_g.graphml")

# %% sort minigraph based on signal flow

sort_inds = np.argsort(node_signal_flow)[::-1]

temp_labels = blockmodel_df.index.values
temp_labels = temp_labels[sort_inds]
示例#28
0
    ax.axis("off")
    add_connections(
        plot_df.iloc[lp_inds, 0],
        plot_df.iloc[rp_inds, 0],
        plot_df.iloc[lp_inds, 1],
        plot_df.iloc[rp_inds, 1],
        ax=ax,
    )


from sklearn.manifold import MDS, Isomap, TSNE
from graspy.embed import ClassicalMDS
from graspy.utils import symmetrize

euc_pdist = pairwise_distances(embed, metric="euclidean")
euc_pdist = symmetrize(euc_pdist)

cos_pdist = pairwise_distances(embed, metric="cosine")
cos_pdist = symmetrize(cos_pdist)

for Manifold, name in zip((ClassicalMDS, ), ("cmds", )):  # MDS, Isomap, TSNE):
    print(name)
    embedder = Manifold(n_components=2, dissimilarity="precomputed")

    euc_embed = embedder.fit_transform(euc_pdist)
    embedplot(euc_embed)
    stashfig(f"euc-embed-{name}")

    cos_embed = embedder.fit_transform(cos_pdist)
    embedplot(cos_embed)
    stashfig(f"cos-embed-{name}")
示例#29
0
block_labels, block_vert_inds, block_inds = _get_block_indices(pred_labels)
block_counts = _calculate_block_counts(adj, block_inds, block_vert_inds)
block_count_df = pd.DataFrame(index=block_labels,
                              columns=block_labels,
                              data=block_counts)
#%%
# uni_pred_labels, counts = np.unique(pred_labels, return_counts=True)
# uni_ints = range(len(uni_pred_labels))
# label_map = dict(zip(uni_pred_labels, uni_ints))
# int_labels = np.array(itemgetter(*uni_pred_labels)(label_map))
# synapse_counts = _calculate_block_counts(adj, uni_ints, pred_labels)

block_df = sbm_prob
block_adj = sbm_prob.values
block_labels = sbm_prob.index.values
sym_adj = symmetrize(block_adj)
lse_embed = LaplacianSpectralEmbed(form="DAD", n_components=1)
latent = lse_embed.fit_transform(sym_adj)
latent = np.squeeze(latent)

block_signal_flow = signal_flow(block_adj)
block_g = nx.from_pandas_adjacency(block_df, create_using=nx.DiGraph())
pos = dict(zip(block_labels, zip(latent, block_signal_flow)))
weights = nx.get_edge_attributes(block_g, "weight")

node_colors = np.array(itemgetter(*block_labels)(pred_color_dict))

uni_pred_labels, pred_counts = np.unique(pred_labels, return_counts=True)
size_map = dict(zip(uni_pred_labels, pred_counts))
node_sizes = np.array(itemgetter(*block_labels)(size_map))
node_sizes *= 4
示例#30
0
prob_df.drop("-1", axis=1, inplace=True)
adj = prob_df.values
adj -= np.diag(np.diag(adj))
prob_df.data = prob_df
print(prob_df.head())

g = nx.from_pandas_adjacency(prob_df, create_using=nx.DiGraph())
uni_labels, counts = np.unique(adjusted_partition, return_counts=True)
size_scaler = 8
size_map = dict(zip(uni_labels, size_scaler * counts))
nx.set_node_attributes(g, size_map, name="Size")
adj = nx.to_numpy_array(g, nodelist=uni_labels)
node_signal_flow = signal_flow(adj)
sf_map = dict(zip(uni_labels, node_signal_flow))
nx.set_node_attributes(g, sf_map, name="Signal Flow")
sym_adj = symmetrize(adj)
node_lap = AdjacencySpectralEmbed(n_components=10).fit_transform(sym_adj)
# node_lap = np.squeeze(node_lap)
i = 5
node_lap = node_lap[:, i]
lap_map = dict(zip(uni_labels, node_lap))
nx.set_node_attributes(g, lap_map, name="Laplacian-2")

pos = nx.spring_layout(g)
new_pos = {}
for key, val in pos.items():
    new_pos[key] = val[1]
nx.set_node_attributes(g, new_pos, name="Spring")

color_map = dict(zip(uni_labels, cc.glasbey_light))
nx.set_node_attributes(g, color_map, name="Color")