def main(): """ Creates a hydrologically correct MODFLOW grid that inlcudes minimum DEM elevations for all stream cells and mean elevations everywhere else """ """ dem = 'DEM' grid = 'grid_tmp' streams = 'streams_tmp' streams_MODFLOW = 'streams_tmp_MODFLOW' DEM_MODFLOW = 'DEM_coarse' resolution = 500 """ options, flags = gscript.parser() dem = options['dem'] grid = options['grid'] streams = options['streams'] #resolution = float(options['resolution']) streams_MODFLOW = options['streams_modflow'] DEM_MODFLOW = options['dem_modflow'] # Get number of rows and columns colNames = np.array(gscript.vector_db_select(grid, layer=1)['columns']) colValues = np.array( gscript.vector_db_select(grid, layer=1)['values'].values()) cats = colValues[:, colNames == 'cat'].astype(int).squeeze() rows = colValues[:, colNames == 'row'].astype(int).squeeze() cols = colValues[:, colNames == 'col'].astype(int).squeeze() nRows = np.max(rows) nCols = np.max(cols) gscript.use_temp_region() # Set the region to capture only the channel g.region(raster=dem) v.to_rast(input=streams, output=streams_MODFLOW, use='val', value=1.0, type='line', overwrite=gscript.overwrite(), quiet=True) r.mapcalc('tmp' + " = " + streams_MODFLOW + " * " + dem, overwrite=True) g.rename(raster=('tmp', streams_MODFLOW), overwrite=True, quiet=True) g.region(vector=grid, rows=nRows, cols=nCols, quiet=True) r.resamp_stats(input=streams_MODFLOW, output=streams_MODFLOW, method='average', overwrite=gscript.overwrite(), quiet=True) r.resamp_stats(input=dem, output=DEM_MODFLOW, method='average', overwrite=gscript.overwrite(), quiet=True) r.patch(input=streams_MODFLOW + ',' + DEM_MODFLOW, output=DEM_MODFLOW, overwrite=True, quiet=True)
def main(): """ Creates a hydrologically correct MODFLOW grid that inlcudes minimum DEM elevations for all stream cells and mean elevations everywhere else """ """ dem = 'DEM' grid = 'grid_tmp' streams = 'streams_tmp' streams_MODFLOW = 'streams_tmp_MODFLOW' DEM_MODFLOW = 'DEM_coarse' resolution = 500 """ options, flags = gscript.parser() dem = options['dem'] grid = options['grid'] streams = options['streams'] #resolution = float(options['resolution']) streams_MODFLOW = options['streams_modflow'] DEM_MODFLOW = options['dem_modflow'] gscript.use_temp_region() # Set the region to capture only the channel g.region(raster=dem) v.to_rast(input=streams, output=streams_MODFLOW, use='val', value=1.0, type='line', overwrite=gscript.overwrite(), quiet=True) r.mapcalc('tmp' + " = " + streams_MODFLOW + " * " + dem, overwrite=True) g.rename(raster=('tmp', streams_MODFLOW), overwrite=True, quiet=True) g.region(raster=DEM_MODFLOW, quiet=True) print "ALTERED" r.resamp_stats(input=streams_MODFLOW, output=streams_MODFLOW, method='average', overwrite=gscript.overwrite(), quiet=True) r.resamp_stats(input=dem, output=DEM_MODFLOW, method='average', overwrite=gscript.overwrite(), quiet=True) r.patch(input=streams_MODFLOW + ',' + DEM_MODFLOW, output=DEM_MODFLOW, overwrite=True, quiet=True)
def main(): """ Creates a hydrologically correct MODFLOW grid that inlcudes minimum DEM elevations for all stream cells and mean elevations everywhere else """ """ dem = 'DEM' grid = 'grid_tmp' streams = 'streams_tmp' streams_MODFLOW = 'streams_tmp_MODFLOW' DEM_MODFLOW = 'DEM_coarse' resolution = 500 """ options, flags = gscript.parser() dem = options['dem'] grid = options['grid'] streams = options['streams'] resolution = float(options['resolution']) streams_MODFLOW = options['streams_modflow'] DEM_MODFLOW = options['dem_modflow'] gscript.use_temp_region() g.region(raster=dem) g.region(vector=grid) v.to_rast(input=streams, output=streams_MODFLOW, use='val', value=1.0, type='line', overwrite=gscript.overwrite(), quiet=True) r.mapcalc(streams_MODFLOW + " = " + streams_MODFLOW + " * DEM", overwrite=True) g.region(res=resolution, quiet=True) r.resamp_stats(input=streams_MODFLOW, output=streams_MODFLOW, method='minimum', overwrite=gscript.overwrite(), quiet=True) r.resamp_stats(input=dem, output=DEM_MODFLOW, method='average', overwrite=gscript.overwrite(), quiet=True) r.patch(input=streams_MODFLOW + ',' + DEM_MODFLOW, output=DEM_MODFLOW, overwrite=True, quiet=True)
def main(): soilloss = options['soilloss'] soilloss3 = soilloss # + '.3' map = options['map'] parcelnumcol = options['parcelnumcol'] flag_l = flags['l'] flag_h = flags['h'] quiet = True if gscript.verbosity() > 2: quiet=False zones = map.split('@')[0] + '.zones' v.to_rast( input=map, use='attr', attrcolumn=parcelnumcol, output=zones, quiet=quiet) def printStats(table, tablefmt='simple'): try: from tabulate import tabulate except: gscript.warning('Install tabulate for pretty printing tabular output ($ pip install tabulate). Using pprint instead...') from pprint import pprint pprint(statout) print tabulate(table,headers='firstrow',tablefmt=tablefmt) if not flag_h: runivar = r.univar(map=soilloss, zones=zones, flags='t', stdout=gscript.PIPE) rstats = runivar.outputs.stdout.strip().split('\n') #show all available values columns #rstats[0].split('|') rstatout = [] for line in range(len(rstats)): lineout = [] for i in (0,7,9,4,5): lineout += (rstats[line].split('|')[i],) rstatout.append(lineout) if flag_l: printStats(rstatout, tablefmt='latex') else: printStats(rstatout) if flag_h: r.report(map=(zones,soilloss3),units='p',flags='')
def main(): soillossbare = options['soillossbare'] soillossgrow = options['soillossgrow'] cfactor = options['cfactor'] pfactor = options['pfactor'] map = options['map'] factorcols = options['factorcols'].split(',') quiet = True if gscript.verbosity() > 2: quiet=False if not (cfactor or pfactor): if not map: gscript.fatal('Please give either factor raster map(s) or vector map with factor(s)') elif not factorcols: gscript.fatal("Please give 'factorcols' (attribute columns with factor(s)) for <%s>" %map) factors = () for factorcol in factorcols: output = map.split('@')[0] + '.' + factorcol gscript.message('Rasterize <%s> with attribute <%s>' %(map, factorcol) + '\n to raster map <%s> ...' %(output) ) v.to_rast(input=map, use='attr', attrcolumn=factorcol, output=output, quiet=quiet) factors += (output,) else: factors = (cfactor, pfactor) gscript.message('Multiply factors <%s> with <%s> ...' %(factors, soillossbare) ) formula = soillossgrow + '=' + soillossbare for factor in factors: formula += '*' + factor r.mapcalc(formula) ## apply color rules r.colors(map = soillossgrow, rules = '-', stdin = colorrules['soillossgrow'], quiet = quiet)
def main(): """ Builds a grid for the MODFLOW component of the USGS hydrologic model, GSFLOW. """ options, flags = gscript.parser() basin = options['basin'] pp = options['pour_point'] raster_input = options['raster_input'] dx = options['dx'] dy = options['dy'] grid = options['output'] mask = options['mask_output'] bc_cell = options['bc_cell'] # basin='basins_tmp_onebasin'; pp='pp_tmp'; raster_input='DEM'; raster_output='DEM_coarse'; dx=dy='500'; grid='grid_tmp'; mask='mask_tmp' """ # Fatal if raster input and output are not both set _lena0 = (len(raster_input) == 0) _lenb0 = (len(raster_output) == 0) if _lena0 + _lenb0 == 1: gscript.fatal("You must set both raster input and output, or neither.") """ # Fatal if bc_cell set but mask and grid are false if bc_cell != '': if (mask == '') or (pp == ''): gscript.fatal( 'Mask and pour point must be set to define b.c. cell') # Create grid -- overlaps DEM, three cells of padding gscript.use_temp_region() reg = gscript.region() reg_grid_edges_sn = np.linspace(reg['s'], reg['n'], reg['rows']) reg_grid_edges_we = np.linspace(reg['w'], reg['e'], reg['cols']) g.region(vector=basin, ewres=dx, nsres=dy) regnew = gscript.region() # Use a grid ratio -- don't match exactly the desired MODFLOW resolution grid_ratio_ns = np.round(regnew['nsres'] / reg['nsres']) grid_ratio_ew = np.round(regnew['ewres'] / reg['ewres']) # Get S, W, and then move the unit number of grid cells over to get N and E # and include 3 cells of padding around the whole watershed _s_dist = np.abs(reg_grid_edges_sn - (regnew['s'] - 3. * regnew['nsres'])) _s_idx = np.where(_s_dist == np.min(_s_dist))[0][0] _s = float(reg_grid_edges_sn[_s_idx]) _n_grid = np.arange(_s, reg['n'] + 3 * grid_ratio_ns * reg['nsres'], grid_ratio_ns * reg['nsres']) _n_dist = np.abs(_n_grid - (regnew['n'] + 3. * regnew['nsres'])) _n_idx = np.where(_n_dist == np.min(_n_dist))[0][0] _n = float(_n_grid[_n_idx]) _w_dist = np.abs(reg_grid_edges_we - (regnew['w'] - 3. * regnew['ewres'])) _w_idx = np.where(_w_dist == np.min(_w_dist))[0][0] _w = float(reg_grid_edges_we[_w_idx]) _e_grid = np.arange(_w, reg['e'] + 3 * grid_ratio_ew * reg['ewres'], grid_ratio_ew * reg['ewres']) _e_dist = np.abs(_e_grid - (regnew['e'] + 3. * regnew['ewres'])) _e_idx = np.where(_e_dist == np.min(_e_dist))[0][0] _e = float(_e_grid[_e_idx]) # Finally make the region g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg['nsres']), ewres=str(grid_ratio_ew * reg['ewres'])) # And then make the grid v.mkgrid(map=grid, overwrite=gscript.overwrite()) # Cell numbers (row, column, continuous ID) v.db_addcolumn(map=grid, columns='id int', quiet=True) colNames = np.array(gscript.vector_db_select(grid, layer=1)['columns']) colValues = np.array( gscript.vector_db_select(grid, layer=1)['values'].values()) cats = colValues[:, colNames == 'cat'].astype(int).squeeze() rows = colValues[:, colNames == 'row'].astype(int).squeeze() cols = colValues[:, colNames == 'col'].astype(int).squeeze() nrows = np.max(rows) ncols = np.max(cols) cats = np.ravel([cats]) _id = np.ravel([ncols * (rows - 1) + cols]) _id_cat = [] for i in range(len(_id)): _id_cat.append((_id[i], cats[i])) gridTopo = VectorTopo(grid) gridTopo.open('rw') cur = gridTopo.table.conn.cursor() cur.executemany("update " + grid + " set id=? where cat=?", _id_cat) gridTopo.table.conn.commit() gridTopo.close() # Cell area v.db_addcolumn(map=grid, columns='area_m2', quiet=True) v.to_db(map=grid, option='area', units='meters', columns='area_m2', quiet=True) # Basin mask if len(mask) > 0: # Fine resolution region: g.region(n=reg['n'], s=reg['s'], w=reg['w'], e=reg['e'], nsres=reg['nsres'], ewres=reg['ewres']) # Rasterize basin v.to_rast(input=basin, output=mask, use='val', value=1, overwrite=gscript.overwrite(), quiet=True) # Coarse resolution region: g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg['nsres']), ewres=str(grid_ratio_ew * reg['ewres'])) r.resamp_stats(input=mask, output=mask, method='sum', overwrite=True, quiet=True) r.mapcalc('tmp' + ' = ' + mask + ' > 0', overwrite=True, quiet=True) g.rename(raster=('tmp', mask), overwrite=True, quiet=True) r.null(map=mask, null=0, quiet=True) # Add mask location (1 vs 0) in the MODFLOW grid v.db_addcolumn(map=grid, columns='basinmask double precision', quiet=True) v.what_rast(map=grid, type='centroid', raster=mask, column='basinmask') """ # Resampled raster if len(raster_output) > 0: r.resamp_stats(input=raster_input, output=raster_output, method='average', overwrite=gscript.overwrite(), quiet=True) """ # Pour point if len(pp) > 0: v.db_addcolumn(map=pp, columns=('row integer', 'col integer'), quiet=True) v.build(map=pp, quiet=True) v.what_vect(map=pp, query_map=grid, column='row', query_column='row', quiet=True) v.what_vect(map=pp, query_map=grid, column='col', query_column='col', quiet=True) # Next point downstream of the pour point # Requires pp (always) and mask (sometimes) # Dependency set above w/ gscript.fatal if len(bc_cell) > 0: ########## NEED TO USE TRUE TEMPORARY FILE ########## # May not work with dx != dy! v.to_rast(input=pp, output='tmp', use='val', value=1, overwrite=True) r.buffer(input='tmp', output='tmp', distances=float(dx) * 1.5, overwrite=True) r.mapcalc('tmp2 = if(tmp==2,1,null()) * ' + raster_input, overwrite=True) g.rename(raster=('tmp2', 'tmp'), overwrite=True, quiet=True) #r.mapcalc('tmp = if(isnull('+raster_input+',0,(tmp == 2)))', overwrite=True) #g.region(rast='tmp') #r.null(map=raster_input, r.drain(input=raster_input, start_points=pp, output='tmp2', overwrite=True) r.mapcalc('tmp3 = tmp2 * tmp', overwrite=True, quiet=True) g.rename(raster=('tmp3', 'tmp'), overwrite=True, quiet=True) #r.null(map='tmp', setnull=0) # Not necessary: center point removed above r.to_vect(input='tmp', output=bc_cell, type='point', column='z', overwrite=gscript.overwrite(), quiet=True) v.db_addcolumn(map=bc_cell, columns=('row integer', 'col integer', 'x double precision', 'y double precision'), quiet=True) v.build(map=bc_cell, quiet=True) v.what_vect(map=bc_cell, query_map=grid, column='row', \ query_column='row', quiet=True) v.what_vect(map=bc_cell, query_map=grid, column='col', \ query_column='col', quiet=True) v.to_db(map=bc_cell, option='coor', columns=('x,y')) # Find out if this is diagonal: finite difference works only N-S, W-E colNames = np.array(gscript.vector_db_select(pp, layer=1)['columns']) colValues = np.array( gscript.vector_db_select(pp, layer=1)['values'].values()) pp_row = int(colValues[:, colNames == 'row'].astype(int).squeeze()) pp_col = int(colValues[:, colNames == 'col'].astype(int).squeeze()) colNames = np.array( gscript.vector_db_select(bc_cell, layer=1)['columns']) colValues = np.array( gscript.vector_db_select(bc_cell, layer=1)['values'].values()) bc_row = int(colValues[:, colNames == 'row'].astype(int).squeeze()) bc_col = int(colValues[:, colNames == 'col'].astype(int).squeeze()) # Also get x and y while we are at it: may be needed later bc_x = float(colValues[:, colNames == 'x'].astype(float).squeeze()) bc_y = float(colValues[:, colNames == 'y'].astype(float).squeeze()) if (bc_row != pp_row) and (bc_col != pp_col): # If not diagonal, two possible locations that are adjacent # to the pour point _col1, _row1 = str(bc_col), str(pp_row) _col2, _row2 = str(pp_col), str(bc_row) # Check if either of these is covered by the basin mask _ismask_1 = gscript.vector_db_select(grid, layer=1, where='(row == ' + _row1 + ') AND (col ==' + _col1 + ')', columns='basinmask') _ismask_1 = int(_ismask_1['values'].values()[0][0]) _ismask_2 = gscript.vector_db_select(grid, layer=1, where='(row == ' + _row2 + ') AND (col ==' + _col2 + ')', columns='basinmask') _ismask_2 = int(_ismask_2['values'].values()[0][0]) # If both covered by mask, error if _ismask_1 and _ismask_2: gscript.fatal( 'All possible b.c. cells covered by basin mask.\n\ Contact the developer: awickert (at) umn(.)edu') # Otherwise, those that keep those that are not covered by basin # mask and set ... # ... wait, do we want the point that touches as few interior # cells as possible? # maybe just try setting both and seeing what happens for now! else: # Get dx and dy dx = gscript.region()['ewres'] dy = gscript.region()['nsres'] # Build tool to handle multiple b.c. cells? bcvect = vector.Vector(bc_cell) bcvect.open('rw') _cat_i = 2 if not _ismask_1: # _x should always be bc_x, but writing generalized code _x = bc_x + dx * (int(_col1) - bc_col) # col 1 at w edge _y = bc_y - dy * (int(_row1) - bc_row) # row 1 at n edge point0 = Point(_x, _y) bcvect.write( point0, cat=_cat_i, attrs=(None, _row1, _col1, _x, _y), ) bcvect.table.conn.commit() _cat_i += 1 if not _ismask_2: # _y should always be bc_y, but writing generalized code _x = bc_x + dx * (int(_col2) - bc_col) # col 1 at w edge _y = bc_y - dy * (int(_row2) - bc_row) # row 1 at n edge point0 = Point(_x, _y) bcvect.write( point0, cat=_cat_i, attrs=(None, _row2, _col2, _x, _y), ) bcvect.table.conn.commit() # Build database table and vector geometry bcvect.build() bcvect.close() g.region(n=reg['n'], s=reg['s'], w=reg['w'], e=reg['e'], nsres=reg['nsres'], ewres=reg['ewres'])
def euclidean_distance_fields(prefix, region, overwrite=False): """ Generate euclidean distance fields from map corner and centre coordinates Parameters ---------- prefix : str Name to use as prefix to save distance maps region : grass.pygrass.gis.region.Region Region overwrite : bool Whether to overwrite existing maps """ point_topleft = Point(region.west + region.ewres / 2, region.north - region.nsres / 2) point_topright = Point(region.east - region.ewres / 2, region.north - region.nsres / 2) point_lowerleft = Point(region.west + region.ewres / 2, region.south + region.nsres / 2) point_lowerright = Point(region.east - region.ewres / 2, region.south + region.nsres / 2) point_centre = Point( region.west + (region.east - region.west) / 2, region.south + (region.north - region.south) / 2, ) points = { "topleft": point_topleft, "topright": point_topright, "lowerleft": point_lowerleft, "lowerright": point_lowerright, "centre": point_centre, } for name, p in points.items(): point_name = "_".join([prefix, name]) vect = VectorTopo(name=point_name) vect.open( mode="w", tab_name=point_name, tab_cols=[("cat", "INTEGER PRIMARY KEY"), ("name", "TEXT")], ) vect.write(p, ("point", )) vect.table.conn.commit() vect.close() gvect.to_rast( input=point_name, type="point", use="val", output=point_name, overwrite=overwrite, ) grast.grow_distance(point_name, distance="distance_to_" + point_name, overwrite=overwrite) g.remove(name=point_name, type="raster", flags="f") g.remove(name=point_name, type="raster", flags="f")
def rasterizeCs(reso): g.region(res=reso) v.to_rast(csmap, output = 'cr', use='attr',attribute_column=fcol, overwrite = True)
def main(): """ Import any raster or vector data set and add its attribute to a GSFLOW data object """ ################## # OPTION PARSING # ################## options, flags = gscript.parser() # Parsing if options["attrtype"] == "int": attrtype = "integer" elif options["attrtype"] == "float": attrtype = "double precision" elif options["attrtype"] == "string": attrtype = "varchar" else: attrtype = "" ######################################## # PROCESS AND UPLOAD TO DATABASE TABLE # ######################################## if options["vector_area"] is not "": gscript.use_temp_region() g.region(vector=options["map"], res=options["dxy"]) v.to_rast( input=options["vector_area"], output="tmp___tmp", use="attr", attribute_column=options["from_column"], quiet=True, overwrite=True, ) try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options["map"], columns=options["column"], quiet=True) except: pass if attrtype is "double precision": try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options["map"], columns="tmp_average", quiet=True) except: pass v.rast_stats( map=options["map"], raster="tmp___tmp", column_prefix="tmp", method="average", flags="c", quiet=True, ) g.remove(type="raster", name="tmp___tmp", flags="f", quiet=True) v.db_renamecolumn( map=options["map"], column=["tmp_average", options["column"]], quiet=True, ) else: try: v.db_addcolumn( map=options["map"], columns=options["column"] + " " + attrtype, quiet=True, ) except: pass gscript.run_command( "v.distance", from_=options["map"], to=options["vector_area"], upload="to_attr", to_column=options["from_column"], column=options["column"], quiet=True, ) elif options["vector_points"] is not "": try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options["map"], columns=options["column"], quiet=True) v.db_addcolumn( map=options["map"], columns=options["column"] + " " + attrtype, quiet=True, ) except: pass gscript.run_command( "v.distance", from_=options["map"], to=options["vector_points"], upload="to_attr", to_column=options["from_column"], column=options["column"], quiet=True, ) elif options["raster"] is not "": try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options["map"], columns=options["column"], quiet=True) except: pass v.rast_stats( map=options["map"], raster=options["raster"], column_prefix="tmp", method="average", flags="c", quiet=True, ) v.db_renamecolumn(map=options["map"], column=["tmp_average", options["column"]], quiet=True) gscript.message("Done.")
def main(): """ Builds a grid for the MODFLOW component of the USGS hydrologic model, GSFLOW. """ options, flags = gscript.parser() basin = options["basin"] pp = options["pour_point"] raster_input = options["raster_input"] dx = options["dx"] dy = options["dy"] grid = options["output"] mask = options["mask_output"] bc_cell = options["bc_cell"] # basin='basins_tmp_onebasin'; pp='pp_tmp'; raster_input='DEM'; raster_output='DEM_coarse'; dx=dy='500'; grid='grid_tmp'; mask='mask_tmp' """ # Fatal if raster input and output are not both set _lena0 = (len(raster_input) == 0) _lenb0 = (len(raster_output) == 0) if _lena0 + _lenb0 == 1: gscript.fatal("You must set both raster input and output, or neither.") """ # Fatal if bc_cell set but mask and grid are false if bc_cell != "": if (mask == "") or (pp == ""): gscript.fatal( "Mask and pour point must be set to define b.c. cell") # Create grid -- overlaps DEM, three cells of padding g.region(raster=raster_input, ewres=dx, nsres=dy) gscript.use_temp_region() reg = gscript.region() reg_grid_edges_sn = np.linspace(reg["s"], reg["n"], reg["rows"]) reg_grid_edges_we = np.linspace(reg["w"], reg["e"], reg["cols"]) g.region(vector=basin, ewres=dx, nsres=dy) regnew = gscript.region() # Use a grid ratio -- don't match exactly the desired MODFLOW resolution grid_ratio_ns = np.round(regnew["nsres"] / reg["nsres"]) grid_ratio_ew = np.round(regnew["ewres"] / reg["ewres"]) # Get S, W, and then move the unit number of grid cells over to get N and E # and include 3 cells of padding around the whole watershed _s_dist = np.abs(reg_grid_edges_sn - (regnew["s"] - 3.0 * regnew["nsres"])) _s_idx = np.where(_s_dist == np.min(_s_dist))[0][0] _s = float(reg_grid_edges_sn[_s_idx]) _n_grid = np.arange(_s, reg["n"] + 3 * grid_ratio_ns * reg["nsres"], grid_ratio_ns * reg["nsres"]) _n_dist = np.abs(_n_grid - (regnew["n"] + 3.0 * regnew["nsres"])) _n_idx = np.where(_n_dist == np.min(_n_dist))[0][0] _n = float(_n_grid[_n_idx]) _w_dist = np.abs(reg_grid_edges_we - (regnew["w"] - 3.0 * regnew["ewres"])) _w_idx = np.where(_w_dist == np.min(_w_dist))[0][0] _w = float(reg_grid_edges_we[_w_idx]) _e_grid = np.arange(_w, reg["e"] + 3 * grid_ratio_ew * reg["ewres"], grid_ratio_ew * reg["ewres"]) _e_dist = np.abs(_e_grid - (regnew["e"] + 3.0 * regnew["ewres"])) _e_idx = np.where(_e_dist == np.min(_e_dist))[0][0] _e = float(_e_grid[_e_idx]) # Finally make the region g.region( w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg["nsres"]), ewres=str(grid_ratio_ew * reg["ewres"]), ) # And then make the grid v.mkgrid(map=grid, overwrite=gscript.overwrite()) # Cell numbers (row, column, continuous ID) v.db_addcolumn(map=grid, columns="id int", quiet=True) colNames = np.array(gscript.vector_db_select(grid, layer=1)["columns"]) colValues = np.array( gscript.vector_db_select(grid, layer=1)["values"].values()) cats = colValues[:, colNames == "cat"].astype(int).squeeze() rows = colValues[:, colNames == "row"].astype(int).squeeze() cols = colValues[:, colNames == "col"].astype(int).squeeze() nrows = np.max(rows) ncols = np.max(cols) cats = np.ravel([cats]) _id = np.ravel([ncols * (rows - 1) + cols]) _id_cat = [] for i in range(len(_id)): _id_cat.append((_id[i], cats[i])) gridTopo = VectorTopo(grid) gridTopo.open("rw") cur = gridTopo.table.conn.cursor() cur.executemany("update " + grid + " set id=? where cat=?", _id_cat) gridTopo.table.conn.commit() gridTopo.close() # Cell area v.db_addcolumn(map=grid, columns="area_m2 double precision", quiet=True) v.to_db(map=grid, option="area", units="meters", columns="area_m2", quiet=True) # Basin mask if len(mask) > 0: # Fine resolution region: g.region( n=reg["n"], s=reg["s"], w=reg["w"], e=reg["e"], nsres=reg["nsres"], ewres=reg["ewres"], ) # Rasterize basin v.to_rast( input=basin, output=mask, use="val", value=1, overwrite=gscript.overwrite(), quiet=True, ) # Coarse resolution region: g.region( w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg["nsres"]), ewres=str(grid_ratio_ew * reg["ewres"]), ) r.resamp_stats(input=mask, output=mask, method="sum", overwrite=True, quiet=True) r.mapcalc("tmp" + " = " + mask + " > 0", overwrite=True, quiet=True) g.rename(raster=("tmp", mask), overwrite=True, quiet=True) r.null(map=mask, null=0, quiet=True) # Add mask location (1 vs 0) in the MODFLOW grid v.db_addcolumn(map=grid, columns="basinmask double precision", quiet=True) v.what_rast(map=grid, type="centroid", raster=mask, column="basinmask") """ # Resampled raster if len(raster_output) > 0: r.resamp_stats(input=raster_input, output=raster_output, method='average', overwrite=gscript.overwrite(), quiet=True) """ # Pour point if len(pp) > 0: v.db_addcolumn(map=pp, columns=("row integer", "col integer"), quiet=True) v.build(map=pp, quiet=True) v.what_vect(map=pp, query_map=grid, column="row", query_column="row", quiet=True) v.what_vect(map=pp, query_map=grid, column="col", query_column="col", quiet=True) # Next point downstream of the pour point # Requires pp (always) and mask (sometimes) # Dependency set above w/ gscript.fatal # g.region(raster='DEM') # dx = gscript.region()['ewres'] # dy = gscript.region()['nsres'] if len(bc_cell) > 0: ########## NEED TO USE TRUE TEMPORARY FILE ########## # May not work with dx != dy! v.to_rast(input=pp, output="tmp", use="val", value=1, overwrite=True) r.buffer(input="tmp", output="tmp", distances=float(dx) * 1.5, overwrite=True) r.mapcalc("tmp2 = if(tmp==2,1,null()) * " + raster_input, overwrite=True) # r.mapcalc('tmp = if(isnull('+raster_input+',0,(tmp == 2)))', overwrite=True) # g.region(rast='tmp') # r.null(map=raster_input, # g.region(raster=raster_input) # r.resample(input=raster_input, output='tmp3', overwrite=True) r.resamp_stats(input=raster_input, output="tmp3", method="minimum", overwrite=True) r.drain(input="tmp3", start_points=pp, output="tmp", overwrite=True) # g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns*reg['nsres']), ewres=str(grid_ratio_ew*reg['ewres'])) # r.resamp_stats(input='tmp2', output='tmp3', overwrite=True) # g.rename(raster=('tmp3','tmp2'), overwrite=True, quiet=True) r.mapcalc("tmp3 = tmp2 * tmp", overwrite=True, quiet=True) g.rename(raster=("tmp3", "tmp"), overwrite=True, quiet=True) # r.null(map='tmp', setnull=0) # Not necessary: center point removed above r.to_vect( input="tmp", output=bc_cell, type="point", column="z", overwrite=gscript.overwrite(), quiet=True, ) v.db_addcolumn( map=bc_cell, columns=( "row integer", "col integer", "x double precision", "y double precision", ), quiet=True, ) v.build(map=bc_cell, quiet=True) v.what_vect(map=bc_cell, query_map=grid, column="row", query_column="row", quiet=True) v.what_vect(map=bc_cell, query_map=grid, column="col", query_column="col", quiet=True) v.to_db(map=bc_cell, option="coor", columns=("x,y")) # Of the candidates, the pour point is the closest one # v.db_addcolumn(map=bc_cell, columns=('dist_to_pp double precision'), quiet=True) # v.distance(from_=bc_cell, to=pp, upload='dist', column='dist_to_pp') # Find out if this is diagonal: finite difference works only N-S, W-E colNames = np.array(gscript.vector_db_select(pp, layer=1)["columns"]) colValues = np.array( gscript.vector_db_select(pp, layer=1)["values"].values()) pp_row = colValues[:, colNames == "row"].astype(int).squeeze() pp_col = colValues[:, colNames == "col"].astype(int).squeeze() colNames = np.array( gscript.vector_db_select(bc_cell, layer=1)["columns"]) colValues = np.array( gscript.vector_db_select(bc_cell, layer=1)["values"].values()) bc_row = colValues[:, colNames == "row"].astype(int).squeeze() bc_col = colValues[:, colNames == "col"].astype(int).squeeze() # Also get x and y while we are at it: may be needed later bc_x = colValues[:, colNames == "x"].astype(float).squeeze() bc_y = colValues[:, colNames == "y"].astype(float).squeeze() if (bc_row != pp_row).all() and (bc_col != pp_col).all(): if bc_row.ndim > 0: if len(bc_row) > 1: for i in range(len(bc_row)): """ UNTESTED!!!! And probably unimportant -- having 2 cells with river going through them is most likely going to happen with two adjacent cells -- so a side and a corner """ _col1, _row1 = str(bc_col[i]), str(pp_row[i]) _col2, _row2 = str(pp_col[i]), str(bc_row[i]) # Check if either of these is covered by the basin mask _ismask_1 = gscript.vector_db_select( grid, layer=1, where="(row == " + _row1 + ") AND (col ==" + _col1 + ")", columns="basinmask", ) _ismask_1 = int(_ismask_1["values"].values()[0][0]) _ismask_2 = gscript.vector_db_select( grid, layer=1, where="(row == " + _row2 + ") AND (col ==" + _col2 + ")", columns="basinmask", ) _ismask_2 = int(_ismask_2["values"].values()[0][0]) # check if either of these is the other point """ NOT DOING THIS YET -- HAVEN'T THOUGHT THROUGH IF ACTUALLY NECESSARY. (And this is an edge case anyway) """ # If both covered by mask, error if _ismask_1 and _ismask_2: gscript.fatal( "All possible b.c. cells covered by basin mask.\n\ Contact the developer: awickert (at) umn(.)edu" ) # If not diagonal, two possible locations that are adjacent # to the pour point _col1, _row1 = str(bc_col), str(pp_row) _col2, _row2 = str(pp_col), str(bc_row) # Check if either of these is covered by the basin mask _ismask_1 = gscript.vector_db_select( grid, layer=1, where="(row == " + _row1 + ") AND (col ==" + _col1 + ")", columns="basinmask", ) _ismask_1 = int(_ismask_1["values"].values()[0][0]) _ismask_2 = gscript.vector_db_select( grid, layer=1, where="(row == " + _row2 + ") AND (col ==" + _col2 + ")", columns="basinmask", ) _ismask_2 = int(_ismask_2["values"].values()[0][0]) # If both covered by mask, error if _ismask_1 and _ismask_2: gscript.fatal( "All possible b.c. cells covered by basin mask.\n\ Contact the developer: awickert (at) umn(.)edu") # Otherwise, those that keep those that are not covered by basin # mask and set ... # ... wait, do we want the point that touches as few interior # cells as possible? # maybe just try setting both and seeing what happens for now! else: # Get dx and dy # dx = gscript.region()['ewres'] # dy = gscript.region()['nsres'] # Build tool to handle multiple b.c. cells? bcvect = vector.Vector(bc_cell) bcvect.open("rw") _cat_i = 2 if _ismask_1 != 0: # _x should always be bc_x, but writing generalized code _x = bc_x + float(dx) * (int(_col1) - bc_col ) # col 1 at w edge _y = bc_y - float(dy) * (int(_row1) - bc_row ) # row 1 at n edge point0 = Point(_x, _y) bcvect.write( point0, cat=_cat_i, attrs=(None, _row1, _col1, _x, _y), ) bcvect.table.conn.commit() _cat_i += 1 if _ismask_2 != 0: # _y should always be bc_y, but writing generalized code _x = bc_x + float(dx) * (int(_col2) - bc_col ) # col 1 at w edge _y = bc_y - float(dy) * (int(_row2) - bc_row ) # row 1 at n edge point0 = Point(_x, _y) bcvect.write( point0, cat=_cat_i, attrs=(None, _row2, _col2, _x, _y), ) bcvect.table.conn.commit() # Build database table and vector geometry bcvect.build() bcvect.close() g.region( n=reg["n"], s=reg["s"], w=reg["w"], e=reg["e"], nsres=reg["nsres"], ewres=reg["ewres"], )
def main(): """ Import any raster or vector data set and add its attribute to a GSFLOW data object """ ################## # OPTION PARSING # ################## options, flags = gscript.parser() # Parsing if options['attrtype'] == 'int': attrtype = 'integer' elif options['attrtype'] == 'float': attrtype = 'double precision' elif options['attrtype'] == 'string': attrtype = 'varchar' else: attrtype = '' ######################################## # PROCESS AND UPLOAD TO DATABASE TABLE # ######################################## if options['vector_area'] is not '': gscript.use_temp_region() g.region(vector=options['map'], res=options['dxy']) v.to_rast(input=options['vector_area'], output='tmp___tmp', use='attr', attribute_column=options['from_column'], quiet=True, overwrite=True) try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options['map'], columns=options['column'], quiet=True) except: pass if attrtype is 'double precision': try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options['map'], columns='tmp_average', quiet=True) except: pass v.rast_stats(map=options['map'], raster='tmp___tmp', column_prefix='tmp', method='average', flags='c', quiet=True) g.remove(type='raster', name='tmp___tmp', flags='f', quiet=True) v.db_renamecolumn(map=options['map'], column=['tmp_average', options['column']], quiet=True) else: try: v.db_addcolumn(map=options['map'], columns=options['column'] + ' ' + attrtype, quiet=True) except: pass gscript.run_command('v.distance', from_=options['map'], to=options['vector_area'], upload='to_attr', to_column=options['from_column'], column=options['column'], quiet=True) elif options['vector_points'] is not '': try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options['map'], columns=options['column'], quiet=True) v.db_addcolumn(map=options['map'], columns=options['column'] + ' ' + attrtype, quiet=True) except: pass gscript.run_command('v.distance', from_=options['map'], to=options['vector_points'], upload='to_attr', to_column=options['from_column'], column=options['column'], quiet=True) elif options['raster'] is not '': try: gscript.message("Checking for existing column to overwrite") v.db_dropcolumn(map=options['map'], columns=options['column'], quiet=True) except: pass v.rast_stats(map=options['map'], raster=options['raster'], column_prefix='tmp', method='average', flags='c', quiet=True) v.db_renamecolumn(map=options['map'], column=['tmp_average', options['column']], quiet=True) gscript.message("Done.")
def main(): """ Builds a grid for the MODFLOW component of the USGS hydrologic model, GSFLOW. """ options, flags = gscript.parser() basin = options['basin'] pp = options['pour_point'] raster_input = options['raster_input'] dx = options['dx'] dy = options['dy'] grid = options['output'] mask = options['mask_output'] bc_cell = options['bc_cell'] # basin='basins_tmp_onebasin'; pp='pp_tmp'; raster_input='DEM'; raster_output='DEM_coarse'; dx=dy='500'; grid='grid_tmp'; mask='mask_tmp' """ # Fatal if raster input and output are not both set _lena0 = (len(raster_input) == 0) _lenb0 = (len(raster_output) == 0) if _lena0 + _lenb0 == 1: grass.fatal("You must set both raster input and output, or neither.") """ # Create grid -- overlaps DEM, one cell of padding gscript.use_temp_region() reg = gscript.region() reg_grid_edges_sn = np.linspace(reg['s'], reg['n'], reg['rows']) reg_grid_edges_we = np.linspace(reg['w'], reg['e'], reg['cols']) g.region(vector=basin, ewres=dx, nsres=dy) regnew = gscript.region() # Use a grid ratio -- don't match exactly the desired MODFLOW resolution grid_ratio_ns = np.round(regnew['nsres'] / reg['nsres']) grid_ratio_ew = np.round(regnew['ewres'] / reg['ewres']) # Get S, W, and then move the unit number of grid cells over to get N and E # and include 3 cells of padding around the whole watershed _s_dist = np.abs(reg_grid_edges_sn - (regnew['s'] - 3. * regnew['nsres'])) _s_idx = np.where(_s_dist == np.min(_s_dist))[0][0] _s = float(reg_grid_edges_sn[_s_idx]) _n_grid = np.arange(_s, reg['n'] + 3 * grid_ratio_ns * reg['nsres'], grid_ratio_ns * reg['nsres']) _n_dist = np.abs(_n_grid - (regnew['n'] + 3. * regnew['nsres'])) _n_idx = np.where(_n_dist == np.min(_n_dist))[0][0] _n = float(_n_grid[_n_idx]) _w_dist = np.abs(reg_grid_edges_we - (regnew['w'] - 3. * regnew['ewres'])) _w_idx = np.where(_w_dist == np.min(_w_dist))[0][0] _w = float(reg_grid_edges_we[_w_idx]) _e_grid = np.arange(_w, reg['e'] + 3 * grid_ratio_ew * reg['ewres'], grid_ratio_ew * reg['ewres']) _e_dist = np.abs(_e_grid - (regnew['e'] + 3. * regnew['ewres'])) _e_idx = np.where(_e_dist == np.min(_e_dist))[0][0] _e = float(_e_grid[_e_idx]) # Finally make the region g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg['nsres']), ewres=str(grid_ratio_ew * reg['ewres'])) # And then make the grid v.mkgrid(map=grid, overwrite=gscript.overwrite()) # Cell numbers (row, column, continuous ID) v.db_addcolumn(map=grid, columns='id int', quiet=True) colNames = np.array(gscript.vector_db_select(grid, layer=1)['columns']) colValues = np.array( gscript.vector_db_select(grid, layer=1)['values'].values()) cats = colValues[:, colNames == 'cat'].astype(int).squeeze() rows = colValues[:, colNames == 'row'].astype(int).squeeze() cols = colValues[:, colNames == 'col'].astype(int).squeeze() nrows = np.max(rows) ncols = np.max(cols) cats = np.ravel([cats]) _id = np.ravel([ncols * (rows - 1) + cols]) _id_cat = [] for i in range(len(_id)): _id_cat.append((_id[i], cats[i])) gridTopo = VectorTopo(grid) gridTopo.open('rw') cur = gridTopo.table.conn.cursor() cur.executemany("update " + grid + " set id=? where cat=?", _id_cat) gridTopo.table.conn.commit() gridTopo.close() # Cell area v.db_addcolumn(map=grid, columns='area_m2', quiet=True) v.to_db(map=grid, option='area', units='meters', columns='area_m2', quiet=True) # Basin mask if len(mask) > 0: # Fine resolution region: g.region(n=reg['n'], s=reg['s'], w=reg['w'], e=reg['e'], nsres=reg['nsres'], ewres=reg['ewres']) # Rasterize basin v.to_rast(input=basin, output=mask, use='val', value=1, overwrite=gscript.overwrite(), quiet=True) # Coarse resolution region: g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns * reg['nsres']), ewres=str(grid_ratio_ew * reg['ewres'])) r.resamp_stats(input=mask, output=mask, method='sum', overwrite=True, quiet=True) r.mapcalc(mask + ' = ' + mask + ' > 0', overwrite=True, quiet=True) """ # Resampled raster if len(raster_output) > 0: r.resamp_stats(input=raster_input, output=raster_output, method='average', overwrite=gscript.overwrite(), quiet=True) """ # Pour point if len(pp) > 0: v.db_addcolumn(map=pp, columns=('row integer', 'col integer'), quiet=True) v.build(map=pp, quiet=True) v.what_vect(map=pp, query_map=grid, column='row', query_column='row', quiet=True) v.what_vect(map=pp, query_map=grid, column='col', query_column='col', quiet=True) # Next point downstream of the pour point if len(bc_cell) > 0: ########## NEED TO USE TRUE TEMPORARY FILE ########## # May not work with dx != dy! v.to_rast(input=pp, output='tmp', use='val', value=1, overwrite=True) r.buffer(input='tmp', output='tmp', distances=float(dx) * 1.5, overwrite=True) r.mapcalc('tmp = (tmp == 2) * ' + raster_input, overwrite=True) r.drain(input=raster_input, start_points=pp, output='tmp2', overwrite=True) r.mapcalc('tmp = tmp2 * tmp', overwrite=True) r.null(map='tmp', setnull=0) r.to_vect(input='tmp', output=bc_cell, type='point', column='z', overwrite=gscript.overwrite(), quiet=True) v.db_addcolumn(map=bc_cell, columns=('row integer', 'col integer'), quiet=True) v.build(map=bc_cell, quiet=True) v.what_vect(map=bc_cell, query_map=grid, column='row', \ query_column='row', quiet=True) v.what_vect(map=bc_cell, query_map=grid, column='col', \ query_column='col', quiet=True) g.region(n=reg['n'], s=reg['s'], w=reg['w'], e=reg['e'], nsres=reg['nsres'], ewres=reg['ewres'])
def main(): soillossin = options['soillossin'] soillossout = options['soillossout'] factorold = options['factorold'] factornew = options['factornew'] map = options['map'] factorcol = options['factorcol'] flag_p = flags['p'] # patch factornew with factorold flag_k = flags['k'] # calculate k-factor components from % clay p_T, silt p_U, stones p_st, humus p_H if not factornew: factors = {} if flag_k: gscript.message('Using factor derived from \ soil components.') parcelmap = Vect(map) parcelmap.open(mode='rw', layer=1) parcelmap.table.filters.select() cur = parcelmap.table.execute() col_names = [cn[0] for cn in cur.description] rows = cur.fetchall() for col in (u'Kb',u'Ks',u'Kh', u'K'): if col not in parcelmap.table.columns: parcelmap.table.columns.add(col,u'DOUBLE') for row in rows: rowid = row[1] p_T = row[7] p_U = row[8] p_st = row[9] p_H = row[10] print("Parzelle mit id %d :" %rowid) for sublist in bodenarten: # p_T and p_U if p_T in range(sublist[2],sublist[3]) \ and p_U in range(sublist[4],sublist[5]) : print('Bodenart "' + sublist[1] + '", Kb = ' + str(sublist[6])) Kb = sublist[6] break for sublist in skelettgehalte: if p_st < sublist[0]: print('Skelettgehaltsklasse bis ' + str(sublist[0]) + ' , Ks = ' + str(sublist[1])) Ks = sublist[1] break for sublist in humusgehalte: if p_H < sublist[0]: print('Humusgehaltsklasse bis ' + str(sublist[0]) + ' , Ks = ' + str(sublist[1])) Kh = sublist[1] break K = Kb * Ks * Kh print('K = ' + str(K)) if K > 0: parcelmap.table.execute("UPDATE " + parcelmap.name + " SET" + " Kb=" + str(Kb) + ", Ks=" + str(Ks) + ", Kh=" + str(Kh) + ", K=" + str(K) + " WHERE id=" + str(rowid) ) parcelmap.table.conn.commit() parcelmap.close() factorcol2 = 'K' factors['k'] = map.split('@')[0]+'.tmp.'+factorcol2 v.to_rast(input=map, use='attr', attrcolumn=factorcol2, output=factors['k']) r.null(map=factors['k'], setnull='0') if factorcol: gscript.message('Using factor from column %s of \ vector map <%s>.' % (factorcol, map) ) factors['factorcol'] = map.split('@')[0]+'.tmp.' + factorcol v.to_rast(input=map, use='attr', attrcolumn=factorcol, output=factors['factorcol']) r.null(map=factors['factorcol'], setnull='0') print factors.keys() if not 'k' in factors and not 'factorcol' in factors: gscript.fatal('Please provide either factor \ raster map or valid vector map with factor column \ (kfactor) or factor components columns (Kb, Ks, Kh)' ) #if 'k' in factors and 'factorcol' in factors: factornew = map.split('@')[0]+'.kfactor' if 'k' in factors and 'factorcol' in factors: factornew = map.split('@')[0]+'.kfactor' r.patch(input=(factors['factorcol'],factors['k']), output=factornew) elif 'k' in factors: g.copy(rast=(factors['k'],factornew)) elif 'factorcol' in factors: g.copy(rast=(factors['factorcol'],factornew)) if flag_p: #factorcorr = factorold + '.update' r.patch(input=(factornew,factorold), output=factornew) formula = soillossout + '=' + soillossin \ + '/' + factorold \ + '*' + factornew r.mapcalc(formula) r.colors(map=soillossout, raster=soillossin)
def smeasure(): gscript.message('Import <%s>' % measuremap.name) measuremap.autoimport('measures', overwrite=True, quiet=quiet, where="betrieb_id = %s" % betriebid) soillossbaremap = maps['soillossbare'] kfactormap = maps['kfactor'] if soillossbarecorrmap.exist(): gscript.message('Using updated soillossbare map.') soillossbaremap = soillossbarecorrmap kfactormap = Rast(parcelmap.name + '.kfactor') if flag_b: measurebarriermap = Vect(measuremap.name + '_barrier') v.extract(input=measuremap.name, where="barrier = 1", output=measurebarriermap.name) measurefieldblockmap = Vect(measuremap.name + '_fieldblocks') v.overlay(ainput=maps['fieldblocks'].name, binput=measurebarriermap.name,\ operator='not', output=measurefieldblockmap.name) rsoillossbare.inputs.elevation = maps['elevation'].name rsoillossbare.inputs.rfactor = maps['rfactor'].name rsoillossbare.inputs.kfactor = kfactormap.name rsoillossbare.inputs.map = measurefieldblockmap.name rsoillossbare.inputs.constant_m = '0.6' rsoillossbare.inputs.constant_n = '1.4' rsoillossbare.flags.r = True rsoillossbare(soillossbare=soillossbarebarriermap.name) soillossbaremap = soillossbarebarriermap parcelpfactor = parcelmap.name + '.pfactor' parcelcfactor = parcelmap.name + '.cfactor' v.to_rast(input=parcelmap.name, use='attr', attrcolumn='pfactor', output=parcelpfactor) v.to_rast(input=parcelmap.name, use='attr', attrcolumn='cfactor', output=parcelcfactor) measurepfactor = measuremap.name + '.pfactor' measurecfactor = measuremap.name + '.cfactor' v.to_rast(input=measuremap.name, use='attr', attrcolumn='pfactor', output=measurepfactor) v.to_rast(input=measuremap.name, use='attr', attrcolumn='cfactor', output=measurecfactor) pfactor = parcelmap.name + '.pfactor.measure' cfactor = parcelmap.name + '.cfactor.measure' r.patch(input=(measurepfactor,parcelpfactor), output=pfactor) r.patch(input=(measurecfactor,parcelcfactor), output=cfactor) rsoillossgrow.inputs.soillossbare = soillossbaremap.name rsoillossgrow.inputs.cfactor = pfactor rsoillossgrow.inputs.pfactor = cfactor rsoillossgrow(soillossgrow=soillossmeasuremap.name) rsoillossreclass(soillossmeasuremap.name, 'soillossgrow',flags='') gscript.message('Reclassified and colored maps found in <%s.3> and <%s.9> .'%(soillossmeasuremap.name, soillossmeasuremap.name)) if flag_s: gscript.message('\n \n Statistics for soilloss on grown soil <%s> : '%(soillossgrowmap)) rsoillossstats(soilloss=soillossmeasuremap.name, map=parcelmap.name, parcelnumcol='id') if not flag_c: g.copy(rast=(soillossmeasuremap.name,output)) gscript.message('Copy made to <%s> for automatic output' %(output))