示例#1
0
def test_invalid_nbins():
    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.NaN)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.Inf)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, num_bins=2)
示例#2
0
def test_atlas_parcel_subdivision():
    wm = 'manhattan'
    # much slower: zip(cfg.allowed_mvpp, cfg.mvpp_to_total_num_patches)
    for mvpp, tot_patch_count in zip((1000, 10000), (273, 68)):
        edge_weights_all = extract(subject_id_list,
                                   example_dir,
                                   base_feature=base_feature,
                                   weight_method_list=[
                                       wm,
                                   ],
                                   atlas='fsaverage',
                                   node_size=mvpp,
                                   smoothing_param=fwhm,
                                   out_dir=out_dir,
                                   return_results=True,
                                   num_procs=1)

        num_combinations = len(list(edge_weights_all))

        if num_combinations != len(subject_id_list):
            raise ValueError('mvpp: invalid count : # subjects')

        num_links = tot_patch_count * (tot_patch_count - 1) / 2
        for sub in subject_id_list:
            if edge_weights_all[(wm, sub)].size != num_links:
                raise ValueError('mvpp: invalid count : # links')
示例#3
0
def test_run_API_on_original_features():

    for base_feature in base_feature_list:
        for atlas in feature_to_atlas_list[base_feature]:
            sud_id_list = feature_to_subject_id_list[base_feature]
            edge_weights_all = extract(
                sud_id_list,
                feature_to_in_dir[base_feature],
                base_feature=base_feature,
                weight_method_list=weight_methods_orig_feat_subset,
                atlas=atlas,
                smoothing_param=fwhm,
                out_dir=out_dir,
                return_results=True,
                num_procs=1)

            num_combinations = len(list(edge_weights_all))

            if num_combinations != len(sud_id_list) * len(
                    weight_methods_orig_feat_subset):
                raise ValueError('invalid results : # subjects')

            num_roi_wholebrain = num_roi_atlas[atlas]
            num_links = num_roi_wholebrain * (num_roi_wholebrain - 1) / 2

            for wm in weight_methods_orig_feat_subset:
                for sub in sud_id_list:
                    if edge_weights_all[(wm, sub)].size != num_links:
                        raise ValueError('invalid results : # links')
示例#4
0
def test_run_no_IO():

    for base_feature in base_feature_list:
        for atlas in feature_to_atlas_list[base_feature]:
            try:
                sud_id_list = feature_to_subject_id_list[base_feature]
                edge_weights_all = graynet.extract(
                    sud_id_list,
                    feature_to_in_dir[base_feature],
                    base_feature=base_feature,
                    weight_method_list=weight_methods,
                    atlas=atlas,
                    smoothing_param=fwhm,
                    out_dir=out_dir,
                    return_results=True,
                    num_procs=1)
                num_combinations = len(list(edge_weights_all))

                if num_combinations != len(sud_id_list) * len(weight_methods):
                    raise ValueError('invalid results : # subjects')

                num_roi_wholebrain = num_roi_atlas[atlas]
                num_links = num_roi_wholebrain * (num_roi_wholebrain - 1) / 2

                for wm in weight_methods:
                    for sub in sud_id_list:
                        if edge_weights_all[(wm, sub)].size != num_links:
                            raise ValueError('invalid results : # links')
            except:
                traceback.print_exc()
                raise
示例#5
0
def test_empty_subject_list():
    # API
    with raises(ValueError):
        ew = graynet.extract([], fs_dir)

    # in CLI, only non-Freesurfer lead to an error
    for feat in cfg.features_volumetric:  # invalid list
        with raises(ValueError):
            sys.argv = shlex.split('graynet -i {} -f {}'.format(fs_dir, feat))
            run_cli()
示例#6
0
def test_run_no_IO():
    edge_weights_all = graynet.extract(subject_id_list,
                                       fs_dir,
                                       base_feature=base_feature,
                                       weight_method_list=weight_methods,
                                       atlas=atlas,
                                       smoothing_param=fwhm,
                                       out_dir=out_dir,
                                       return_results=True,
                                       num_procs=4)
    num_combinations = len(list(edge_weights_all))

    if num_combinations != len(subject_id_list) * len(weight_methods):
        raise ValueError('invalid results : # subjects')

    for wm in weight_methods:
        for sub in subject_id_list:
            if edge_weights_all[(wm, sub)].size != num_links:
                raise ValueError('invalid results : # links')
示例#7
0
def test_invalid_edge_range():
    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=-1)

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=[])

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=[
            1,
        ])

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=[1, 2, 3])

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=(1, np.NaN))

    with raises(ValueError):
        ew = graynet.extract(subject_id_list, fs_dir, edge_range=(2, 1))
示例#8
0
def test_empty_subject_list():
    with raises(ValueError):
        ew = graynet.extract([], fs_dir)