示例#1
0
def test_update_dictionary():
    """Tests for update_dictionary"""
    # no conflicts, takes union
    default_dict = {"a": 1, "d": 4}
    overwrite_dict = {"b": 2, "c": 3}
    merged_dict = update_dictionary(default_dict,
                                    overwrite_dict=overwrite_dict)
    assert merged_dict == {"a": 1, "b": 2, "c": 3, "d": 4}

    # overwrite takes precedence in conflicts
    default_dict = {"a": 1, "d": 4}
    overwrite_dict = {"a": 2, "c": 3}
    merged_dict = update_dictionary(default_dict,
                                    overwrite_dict=overwrite_dict)
    assert merged_dict == {"a": 2, "c": 3, "d": 4}

    # overwrite can be None or {}
    default_dict = {"a": 1, "b": 4}
    merged_dict = update_dictionary(default_dict, overwrite_dict=None)
    assert merged_dict == default_dict
    merged_dict = update_dictionary(default_dict, overwrite_dict={})
    assert merged_dict == default_dict

    default_dict = {"a": 1, "b": 4, "c": 5}
    overwrite_dict = {"a": 1, "b": 4}
    update_dictionary(default_dict,
                      overwrite_dict=overwrite_dict,
                      allow_unknown_keys=False)
    # overwrite cannot be a strict superset of default
    with pytest.raises(ValueError, match=r"Unexpected key\(s\) found"):
        overwrite_dict = {"a": 1, "b": 4, "d": 1}
        update_dictionary(default_dict,
                          overwrite_dict=overwrite_dict,
                          allow_unknown_keys=False)
示例#2
0
    def fit(self, X, y=None):
        """Updates `self.impute_params`.

        Parameters
        ----------
        X : `pandas.DataFrame`
            Training input data. e.g. each column is a timeseries.
            Columns are expected to be numeric.
        y : None
            There is no need of a target in a transformer, yet the pipeline API
            requires this parameter.

        Returns
        -------
        self : object
            Returns self.
        """
        assert isinstance(X, pd.DataFrame)
        self._is_fitted = True
        # sets default parameters
        if self.impute_algorithm is not None:
            default_params = DEFAULT_PARAMS.get(self.impute_algorithm, {})
            self.impute_params = update_dictionary(default_params, overwrite_dict=self.impute_params)
        return self
    def fit(self,
            X,
            y=None,
            time_col=cst.TIME_COL,
            value_col=cst.VALUE_COL,
            **fit_params):
        """Fits ``Silverkite`` forecast model.

        Parameters
        ----------
        X: `pandas.DataFrame`
            Input timeseries, with timestamp column,
            value column, and any additional regressors.
            The value column is the response, included in
            ``X`` to allow transformation by `sklearn.pipeline`.
        y: ignored
            The original timeseries values, ignored.
            (The ``y`` for fitting is included in ``X``).
        time_col: `str`
            Time column name in ``X``.
        value_col: `str`
            Value column name in ``X``.
        fit_params: `dict`
            additional parameters for null model.

        Returns
        -------
        self : self
            Fitted model is stored in ``self.model_dict``.
        """
        # Initializes `fit_algorithm_dict` with default values.
        # This cannot be done in __init__ to remain compatible
        # with sklearn grid search.
        default_fit_algorithm_dict = {
            "fit_algorithm": "ridge",
            "fit_algorithm_params": None
        }
        self.fit_algorithm_dict = update_dictionary(
            default_fit_algorithm_dict, overwrite_dict=self.fit_algorithm_dict)

        # Fits null model
        super().fit(X=X,
                    y=y,
                    time_col=time_col,
                    value_col=value_col,
                    **fit_params)

        self.model_dict = self.silverkite.forecast_simple(
            df=X,
            time_col=time_col,
            value_col=value_col,
            time_properties=self.time_properties,
            freq=self.freq,
            forecast_horizon=self.forecast_horizon,
            origin_for_time_vars=self.origin_for_time_vars,
            train_test_thresh=self.train_test_thresh,
            training_fraction=self.training_fraction,
            fit_algorithm=self.fit_algorithm_dict["fit_algorithm"],
            fit_algorithm_params=self.
            fit_algorithm_dict["fit_algorithm_params"],
            holidays_to_model_separately=self.holidays_to_model_separately,
            holiday_lookup_countries=self.holiday_lookup_countries,
            holiday_pre_num_days=self.holiday_pre_num_days,
            holiday_post_num_days=self.holiday_post_num_days,
            holiday_pre_post_num_dict=self.holiday_pre_post_num_dict,
            daily_event_df_dict=self.daily_event_df_dict,
            changepoints_dict=self.changepoints_dict,
            yearly_seasonality=self.yearly_seasonality,
            quarterly_seasonality=self.quarterly_seasonality,
            monthly_seasonality=self.monthly_seasonality,
            weekly_seasonality=self.weekly_seasonality,
            daily_seasonality=self.daily_seasonality,
            max_daily_seas_interaction_order=self.
            max_daily_seas_interaction_order,
            max_weekly_seas_interaction_order=self.
            max_weekly_seas_interaction_order,
            autoreg_dict=self.autoreg_dict,
            seasonality_changepoints_dict=self.seasonality_changepoints_dict,
            min_admissible_value=self.min_admissible_value,
            max_admissible_value=self.max_admissible_value,
            uncertainty_dict=self.uncertainty_dict,
            growth_term=self.growth_term,
            regressor_cols=self.regressor_cols,
            feature_sets_enabled=self.feature_sets_enabled,
            extra_pred_cols=self.extra_pred_cols,
            regression_weight_col=self.regression_weight_col,
            simulation_based=self.simulation_based)

        # Sets attributes based on ``self.model_dict``
        super().finish_fit()
        return self
示例#4
0
    def apply_prophet_model_components_defaults(self,
                                                model_components=None,
                                                time_properties=None):
        """Sets default values for ``model_components``.

        Called by ``get_hyperparameter_grid`` after ``time_properties` is defined.
        Requires ``time_properties`` as well as ``model_components``
        so we do not simply override
        `~greykite.framework.templates.forecast_config_defaults.ForecastConfigDefaults.apply_model_components_defaults`.

        Parameters
        ----------
        model_components : :class:`~greykite.framework.templates.autogen.forecast_config.ModelComponentsParam` or None, default None
            Configuration of model growth, seasonality, events, etc.
            See the docstring of this class for details.
        time_properties : `dict` [`str`, `any`] or None, default None
            Time properties dictionary (likely produced by
            `~greykite.common.time_properties_forecast.get_forecast_time_properties`)
            with keys:

                ``"period"`` : `int`
                    Period of each observation (i.e. minimum time between observations, in seconds).
                ``"simple_freq"`` : `SimpleTimeFrequencyEnum`
                    ``SimpleTimeFrequencyEnum`` member corresponding to data frequency.
                ``"num_training_points"`` : `int`
                    Number of observations for training.
                ``"num_training_days"`` : `int`
                    Number of days for training.
                ``"start_year"`` : `int`
                    Start year of the training period.
                ``"end_year"`` : `int`
                    End year of the forecast period.
                ``"origin_for_time_vars"`` : `float`
                    Continuous time representation of the first date in ``df``.

            If None, start_year is set to 2015 and end_year to 2030.

        Returns
        -------
        model_components : :class:`~greykite.framework.templates.autogen.forecast_config.ModelComponentsParam`
            The provided ``model_components`` with default values set
        """
        if model_components is None:
            model_components = ModelComponentsParam()
        else:
            # makes a copy to avoid mutating input
            model_components = dataclasses.replace(model_components)
        if time_properties is None:
            time_properties = {
                "start_year": 2015,
                "end_year": 2030,
            }

        # seasonality
        default_seasonality = {
            "seasonality_mode": ["additive"],
            "seasonality_prior_scale": [10.0],
            "yearly_seasonality": ['auto'],
            "weekly_seasonality": ['auto'],
            "daily_seasonality": ['auto'],
            "add_seasonality_dict": [None]
        }
        # If seasonality params are not provided, uses default params. Otherwise, prefers provided params.
        # `allow_unknown_keys=False` requires `model_components.seasonality` keys to be a subset of
        # `default_seasonality` keys.
        model_components.seasonality = update_dictionary(
            default_dict=default_seasonality,
            overwrite_dict=model_components.seasonality,
            allow_unknown_keys=False)

        # growth
        default_growth = {"growth_term": ["linear"]}
        model_components.growth = update_dictionary(
            default_dict=default_growth,
            overwrite_dict=model_components.growth,
            allow_unknown_keys=False)

        # events
        default_events = {
            "holiday_lookup_countries":
            "auto",  # see `get_prophet_holidays` for defaults
            "holiday_pre_num_days": [2],
            "holiday_post_num_days": [2],
            "start_year": time_properties["start_year"],
            "end_year": time_properties["end_year"],
            "holidays_prior_scale": [10.0]
        }
        model_components.events = update_dictionary(
            default_dict=default_events,
            overwrite_dict=model_components.events,
            allow_unknown_keys=False)

        # Creates events dictionary for prophet estimator
        # Expands the range of holiday years by 1 year on each end, to ensure we have coverage of most relevant holidays.
        year_list = list(
            range(model_components.events["start_year"] - 1,
                  model_components.events["end_year"] + 2))
        # Currently we support only one set of holiday_lookup_countries, holiday_pre_num_days and holiday_post_num_days.
        # Shows a warning if user supplies >1 set.
        if len(model_components.events["holiday_pre_num_days"]) > 1:
            warnings.warn(
                f"`events['holiday_pre_num_days']` list has more than 1 element. We currently support only 1 element. "
                f"Using {model_components.events['holiday_pre_num_days'][0]}.")
        if len(model_components.events["holiday_post_num_days"]) > 1:
            warnings.warn(
                f"`events['holiday_post_num_days']` list has more than 1 element. We currently support only 1 element. "
                f"Using {model_components.events['holiday_post_num_days'][0]}."
            )
        # If events["holiday_lookup_countries"] has multiple options, picks the first option
        if (model_components.events["holiday_lookup_countries"] is not None and
                model_components.events["holiday_lookup_countries"] != "auto"):
            if len(model_components.events["holiday_lookup_countries"]) > 1:
                # There are multiple elements
                if (any(
                        isinstance(x, list) for x in
                        model_components.events["holiday_lookup_countries"])
                        or None
                        in model_components.events["holiday_lookup_countries"]
                        or "auto" in
                        model_components.events["holiday_lookup_countries"]):
                    # Not a flat list of country names
                    warnings.warn(
                        f"`events['holiday_lookup_countries']` contains multiple options. "
                        f"We currently support only 1 option. Using {model_components.events['holiday_lookup_countries'][0]}."
                    )
                    model_components.events[
                        "holiday_lookup_countries"] = model_components.events[
                            "holiday_lookup_countries"][0]
            elif isinstance(
                    model_components.events["holiday_lookup_countries"][0],
                (list, tuple)):
                # There's only one element, and it's a list of countries
                model_components.events[
                    "holiday_lookup_countries"] = model_components.events[
                        "holiday_lookup_countries"][0]

        model_components.events = {
            "holidays_df":
            self.get_prophet_holidays(
                year_list=year_list,
                countries=model_components.events["holiday_lookup_countries"],
                # holiday effect is modeled from "holiday_pre_num_days" days before
                # to "holiday_post_num_days" days after the holiday
                lower_window=-model_components.events["holiday_pre_num_days"]
                [0],  # Prophet expects a negative value for `lower_window`
                upper_window=model_components.events["holiday_post_num_days"]
                [0]),
            "holidays_prior_scale":
            model_components.events["holidays_prior_scale"]
        }

        # changepoints_dict
        default_changepoints = {
            "changepoint_prior_scale": [0.05],
            "changepoints": [None],
            "n_changepoints": [25],
            "changepoint_range": [0.8]
        }
        model_components.changepoints = update_dictionary(
            default_dict=default_changepoints,
            overwrite_dict=model_components.changepoints,
            allow_unknown_keys=False)

        # uncertainty
        default_uncertainty = {
            "mcmc_samples": [0],
            "uncertainty_samples": [1000]
        }
        model_components.uncertainty = update_dictionary(
            default_dict=default_uncertainty,
            overwrite_dict=model_components.uncertainty,
            allow_unknown_keys=False)

        # regressors
        default_regressors = {"add_regressor_dict": [None]}
        model_components.regressors = update_dictionary(
            default_dict=default_regressors,
            overwrite_dict=model_components.regressors,
            allow_unknown_keys=False)

        # there are no custom parameters for Prophet

        # sets to {} if None, for each item if
        # `model_components.hyperparameter_override` is a list of dictionaries
        model_components.hyperparameter_override = update_dictionaries(
            {}, overwrite_dicts=model_components.hyperparameter_override)

        return model_components
示例#5
0
def apply_default_model_components(model_components=None,
                                   time_properties=None):
    """Sets default values for ``model_components``.

    Parameters
    ----------
    model_components : :class:`~greykite.framework.templates.autogen.forecast_config.ModelComponentsParam` or None, default None
        Configuration of model growth, seasonality, events, etc.
        See :func:`~greykite.framework.templates.silverkite_templates.silverkite_template` for details.
    time_properties : `dict` [`str`, `any`] or None, default None
        Time properties dictionary (likely produced by
        `~greykite.common.time_properties_forecast.get_forecast_time_properties`)
        with keys:

        ``"period"`` : `int`
            Period of each observation (i.e. minimum time between observations, in seconds).
        ``"simple_freq"`` : `SimpleTimeFrequencyEnum`
            ``SimpleTimeFrequencyEnum`` member corresponding to data frequency.
        ``"num_training_points"`` : `int`
            Number of observations for training.
        ``"num_training_days"`` : `int`
            Number of days for training.
        ``"start_year"`` : `int`
            Start year of the training period.
        ``"end_year"`` : `int`
            End year of the forecast period.
        ``"origin_for_time_vars"`` : `float`
            Continuous time representation of the first date in ``df``.

    Returns
    -------
    model_components : :class:`~greykite.framework.templates.autogen.forecast_config.ModelComponentsParam`
        The provided ``model_components`` with default values set
    """
    if model_components is None:
        model_components = ModelComponentsParam()
    else:
        # makes a copy to avoid mutating input
        model_components = dataclasses.replace(model_components)

    # sets default values
    default_seasonality = {
        "fs_components_df": [
            pd.DataFrame({
                "name": ["tod", "tow", "tom", "toq", "toy"],
                "period": [24.0, 7.0, 1.0, 1.0, 1.0],
                "order": [3, 3, 1, 1, 5],
                "seas_names":
                ["daily", "weekly", "monthly", "quarterly", "yearly"]
            })
        ],
    }
    model_components.seasonality = update_dictionary(
        default_seasonality,
        overwrite_dict=model_components.seasonality,
        allow_unknown_keys=False)

    # model_components.growth must be empty.
    # Pass growth terms via `extra_pred_cols` instead.
    default_growth = {}
    model_components.growth = update_dictionary(
        default_growth,
        overwrite_dict=model_components.growth,
        allow_unknown_keys=False)

    default_events = {
        "daily_event_df_dict": [None],
    }
    model_components.events = update_dictionary(
        default_events,
        overwrite_dict=model_components.events,
        allow_unknown_keys=False)

    default_changepoints = {
        "changepoints_dict": [None],
        "seasonality_changepoints_dict": [None],
        # Not allowed, to prevent leaking future information
        # into the past. Pass `changepoints_dict` with method="auto" for
        # automatic detection.
        # "changepoint_detector": [None],
    }
    model_components.changepoints = update_dictionary(
        default_changepoints,
        overwrite_dict=model_components.changepoints,
        allow_unknown_keys=False)

    default_autoregression = {
        "autoreg_dict": [None],
    }
    model_components.autoregression = update_dictionary(
        default_autoregression,
        overwrite_dict=model_components.autoregression,
        allow_unknown_keys=False)

    default_regressors = {}
    model_components.regressors = update_dictionary(
        default_regressors,
        overwrite_dict=model_components.regressors,
        allow_unknown_keys=False)

    default_lagged_regressors = {
        "lagged_regressor_dict": [None],
    }
    model_components.lagged_regressors = update_dictionary(
        default_lagged_regressors,
        overwrite_dict=model_components.lagged_regressors,
        allow_unknown_keys=False)

    default_uncertainty = {
        "uncertainty_dict": [None],
    }
    model_components.uncertainty = update_dictionary(
        default_uncertainty,
        overwrite_dict=model_components.uncertainty,
        allow_unknown_keys=False)

    if time_properties is not None:
        origin_for_time_vars = time_properties.get("origin_for_time_vars")
    else:
        origin_for_time_vars = None

    default_custom = {
        "silverkite":
        [SilverkiteForecast()],  # NB: sklearn creates a copy in grid search
        "silverkite_diagnostics": [SilverkiteDiagnostics()],
        # The same origin for every split, based on start year of full dataset.
        # To use first date of each training split, set to `None` in model_components.
        "origin_for_time_vars": [origin_for_time_vars],
        "extra_pred_cols": ["ct1"],  # linear growth
        "fit_algorithm_dict": [{
            "fit_algorithm": "linear",
            "fit_algorithm_params": None,
        }],
        "min_admissible_value": [None],
        "max_admissible_value": [None],
    }
    model_components.custom = update_dictionary(
        default_custom,
        overwrite_dict=model_components.custom,
        allow_unknown_keys=False)

    # sets to {} if None, for each item if
    # `model_components.hyperparameter_override` is a list of dictionaries
    model_components.hyperparameter_override = update_dictionaries(
        {}, overwrite_dicts=model_components.hyperparameter_override)

    return model_components
示例#6
0
def plot_multivariate(df,
                      x_col,
                      y_col_style_dict="plotly",
                      default_color="rgba(0, 145, 202, 1.0)",
                      xlabel=None,
                      ylabel=cst.VALUE_COL,
                      title=None,
                      showlegend=True):
    """Plots one or more lines against the same x-axis values.

    Parameters
    ----------
    df : `pandas.DataFrame`
        Data frame with ``x_col`` and columns named by the keys in ``y_col_style_dict``.
    x_col: `str`
        Which column to plot on the x-axis.
    y_col_style_dict: `dict` [`str`, `dict` or None] or "plotly" or "auto" or "auto-fill", default "plotly"
        The column(s) to plot on the y-axis, and how to style them.

        If a dictionary:

            - key : `str`
                column name in ``df``
            - value : `dict` or None
                Optional styling options, passed as kwargs to `go.Scatter`.
                If None, uses the default: line labeled by the column name.
                See reference page for `plotly.graph_objs.Scatter` for options
                (e.g. color, mode, width/size, opacity).
                https://plotly.com/python/reference/#scatter.

        If a string, plots all columns in ``df`` besides ``x_col`` against ``x_col``:

            - "plotly": plot lines with default plotly styling
            - "auto": plot lines with color ``default_color``, sorted by value (ascending)
            - "auto-fill": plot lines with color ``default_color``, sorted by value (ascending), and fills between lines

    default_color: `str`, default "rgba(0, 145, 202, 1.0)" (blue)
        Default line color when ``y_col_style_dict`` is one of "auto", "auto-fill".
    xlabel : `str` or None, default None
        x-axis label. If None, default is ``x_col``.
    ylabel : `str` or None, default ``VALUE_COL``
        y-axis label
    title : `str` or None, default None
        Plot title. If None, default is based on axis labels.
    showlegend : `bool`, default True
        Whether to show the legend.

    Returns
    -------
    fig : `plotly.graph_objs.Figure`
        Interactive plotly graph of one or more columns
        in ``df`` against ``x_col``.

        See `~greykite.common.viz.timeseries_plotting.plot_forecast_vs_actual`
        return value for how to plot the figure and add customization.
    """

    if xlabel is None:
        xlabel = x_col
    if title is None and ylabel is not None:
        title = f"{ylabel} vs {xlabel}"

    auto_style = {"line": {"color": default_color}}
    if y_col_style_dict == "plotly":
        # Uses plotly default style
        y_col_style_dict = {col: None for col in df.columns if col != x_col}
    elif y_col_style_dict in ["auto", "auto-fill"]:
        # Columns ordered from low to high
        means = df.drop(columns=x_col).mean()
        column_order = list(means.sort_values().index)
        if y_col_style_dict == "auto":
            # Lines with color `default_color`
            y_col_style_dict = {col: auto_style for col in column_order}
        elif y_col_style_dict == "auto-fill":
            # Lines with color `default_color`, with fill between lines
            y_col_style_dict = {column_order[0]: auto_style}
            y_col_style_dict.update({
                col: {
                    "line": {
                        "color": default_color
                    },
                    "fill": "tonexty"
                }
                for col in column_order[1:]
            })

    data = []
    default_style = dict(mode="lines")
    for column, style_dict in y_col_style_dict.items():
        # By default, column name in ``df`` is used to label the line
        default_col_style = update_dictionary(default_style,
                                              overwrite_dict={"name": column})
        # User can overwrite any of the default values, or remove them by setting key value to None
        style_dict = update_dictionary(default_col_style,
                                       overwrite_dict=style_dict)
        line = go.Scatter(x=df[x_col], y=df[column], **style_dict)
        data.append(line)

    layout = go.Layout(
        xaxis=dict(title=xlabel),
        yaxis=dict(title=ylabel),
        title=title,
        showlegend=showlegend,
        legend={'traceorder': 'reversed'
                }  # Matches the order of ``y_col_style_dict`` (bottom to top)
    )
    fig = go.Figure(data=data, layout=layout)
    return fig
示例#7
0
def plot_multivariate_grouped(df,
                              x_col,
                              y_col_style_dict,
                              grouping_x_col,
                              grouping_x_col_values,
                              grouping_y_col_style_dict,
                              colors=DEFAULT_PLOTLY_COLORS,
                              xlabel=None,
                              ylabel=cst.VALUE_COL,
                              title=None,
                              showlegend=True):
    """Plots multiple lines against the same x-axis values. The lines can
    partially share the x-axis values.

    See parameter descriptions for a running example.

    Parameters
    ----------
    df : `pandas.DataFrame`
        Data frame with ``x_col`` and columns named by the keys in ``y_col_style_dict``,
        ``grouping_x_col``, ``grouping_y_col_style_dict``.

        For example::

            df = pd.DataFrame({
                time: [dt(2018, 1, 1),
                        dt(2018, 1, 2),
                        dt(2018, 1, 3)],
                "y1": [8.5, 2.0, 3.0],
                "y2": [1.4, 2.1, 3.4],
                "y3": [4.2, 3.1, 3.0],
                "y4": [0, 1, 2],
                "y5": [10, 9, 8],
                "group": [1, 2, 1],
            })
        This will be our running example.
    x_col: `str`
        Which column to plot on the x-axis.
        "time" in our example.
    y_col_style_dict: `dict` [`str`, `dict` or None]
        The column(s) to plot on the y-axis, and how to style them.
        These columns are plotted against the complete x-axis.

        - key : `str`
            column name in ``df``
        - value : `dict` or None
            Optional styling options, passed as kwargs to `go.Scatter`.
            If None, uses the default: line labeled by the column name.
            If line color is not given, it is added according to ``colors``.
            See reference page for `plotly.graph_objs.Scatter` for options
            (e.g. color, mode, width/size, opacity).
            https://plotly.com/python/reference/#scatter.

        For example::

            y_col_style_dict={
                "y1": {
                    "name": "y1_name",
                    "legendgroup": "one",
                    "mode": "markers",
                    "line": None  # Remove line params since we use mode="markers"
                },
                "y2": None,
            }

        The function will add a line color to "y1" and "y2" based on the ``colors`` parameter.
        It will also add a name to "y2", since none was given. The "name" of "y1" will be preserved.

        The output ``fig`` will have one line each for each of "y1" and "y2", each plot against
        the entire "time" column.
    grouping_x_col: `str`
        Which column to use to group columns in ``grouping_y_col_style_dict``.
        "group" in our example.
    grouping_x_col_values: `list` [`int`] or None
        Which values to use for grouping. If None, uses all the unique values in
        ``df`` [``grouping_x_col``].
        In our example, specifying ``grouping_x_col_values == [1, 2]`` would plot
        separate lines corresponding to ``group==1`` and ``group==2``.
    grouping_y_col_style_dict: `dict` [`str`, `dict` or None]
        The column(s) to plot on the y-axis, and how to style them.
        These columns are plotted against partial x-axis.
        For each ``grouping_x_col_values`` an element in this dictionary produces
        one line.

        - key : `str`
            column name in ``df``
        - value : `dict` or None
            Optional styling options, passed as kwargs to `go.Scatter`.
            If None, uses the default: line labeled by the ``grouping_x_col_values``,
            ``grouping_x_col`` and column name.
            If a name is given, it is augmented with the ``grouping_x_col_values``.
            If line color is not given, it is added according to ``colors``.
            All the lines sharing same ``grouping_x_col_values`` have the same color.
            See reference page for `plotly.graph_objs.Scatter` for options
            (e.g. color, mode, width/size, opacity).
            https://plotly.com/python/reference/#scatter.

        For example::

            grouping_y_col_style_dict={
                "y3": {
                    "line": {
                        "color": "blue"
                    }
                },
                "y4": {
                    "name": "y4_name",
                    "line": {
                        "width": 2,
                        "dash": "dot"
                    }
                },
                "y5": None,
            }

        The function will add a line color to "y4" and "y5" based on the ``colors`` parameter.
        The line color of "y3" will be "blue" as specified. We also preserve the given line
        properties of "y4".

    `   The function adds a name to "y3" and "y5", since none was given. The given "name" of "y4"
        will be augmented with ``grouping_x_col_values``.

        Each element of ``grouping_y_col_style_dict`` gets one line for each ``grouping_x_col_values``.
        In our example, there will be 2 lines corresponding to "y3", named "1_y3" and "2_y3".
        "1_y3" is plotted against "time = [dt(2018, 1, 1), dt(2018, 1, 3)]", corresponding to ``group==1``.
        "2_y3" is plotted against "time = [dt(2018, 1, 2)", corresponding to ``group==2``.
    colors: [`str`, `list` [`str`]], default ``DEFAULT_PLOTLY_COLORS``
        Which colors to use to build a color palette for plotting.
        This can be a list of RGB colors or a `str` from ``PLOTLY_SCALES``.
        Required number of colors equals sum of the length of ``y_col_style_dict``
        and length of ``grouping_x_col_values``.
        See `~greykite.common.viz.colors_utils.get_color_palette` for details.
    xlabel : `str` or None, default None
        x-axis label. If None, default is ``x_col``.
    ylabel : `str` or None, default ``VALUE_COL``
        y-axis label
    title : `str` or None, default None
        Plot title. If None, default is based on axis labels.
    showlegend : `bool`, default True
        Whether to show the legend.

    Returns
    -------
    fig : `plotly.graph_objs.Figure`
    Interactive plotly graph of one or more columns
    in ``df`` against ``x_col``.

    See `~greykite.common.viz.timeseries_plotting.plot_forecast_vs_actual`
    return value for how to plot the figure and add customization.
    """

    available_grouping_x_col_values = np.unique(df[grouping_x_col])
    if grouping_x_col_values is None:
        grouping_x_col_values = available_grouping_x_col_values
    else:
        missing_grouping_x_col_values = set(grouping_x_col_values) - set(
            available_grouping_x_col_values)
        if len(missing_grouping_x_col_values) > 0:
            raise ValueError(
                f"Following 'grouping_x_col_values' are missing in '{grouping_x_col}' column: "
                f"{missing_grouping_x_col_values}")

    # Chooses the color palette
    n_color = len(y_col_style_dict) + len(grouping_x_col_values)
    color_palette = get_color_palette(num=n_color, colors=colors)

    # Updates colors for y_col_style_dict if it is not specified
    for color_num, (column, style_dict) in enumerate(y_col_style_dict.items()):
        if style_dict is None:
            style_dict = {}
        default_color = {"color": color_palette[color_num]}
        style_dict["line"] = update_dictionary(
            default_color, overwrite_dict=style_dict.get("line"))
        y_col_style_dict[column] = style_dict

    # Standardizes dataset for the next figure
    df_standardized = df.copy().drop_duplicates(subset=[x_col]).sort_values(
        by=x_col)

    # This figure plots the whole xaxis vs yaxis values
    fig = plot_multivariate(df=df_standardized,
                            x_col=x_col,
                            y_col_style_dict=y_col_style_dict,
                            xlabel=xlabel,
                            ylabel=ylabel,
                            title=title,
                            showlegend=showlegend)
    data = fig.data
    layout = fig.layout

    # These figures plot the sliced xaxis vs yaxis values
    for color_num, grouping_x_col_value in enumerate(grouping_x_col_values,
                                                     len(y_col_style_dict)):
        default_color = {"color": color_palette[color_num]}

        sliced_y_col_style_dict = grouping_y_col_style_dict.copy()

        for column, style_dict in sliced_y_col_style_dict.items():
            # Updates colors if it is not specified
            if style_dict is None:
                style_dict = {}
            line_dict = update_dictionary(
                default_color, overwrite_dict=style_dict.get("line"))

            # Augments names with grouping_x_col_value
            name = style_dict.get("name")
            if name is None:
                updated_name = f"{grouping_x_col_value}_{grouping_x_col}_{column}"
            else:
                updated_name = f"{grouping_x_col_value}_{name}"

            overwrite_dict = {"name": updated_name, "line": line_dict}
            style_dict = update_dictionary(style_dict,
                                           overwrite_dict=overwrite_dict)
            sliced_y_col_style_dict[column] = style_dict

        df_sliced = df[df[grouping_x_col] == grouping_x_col_value]
        fig = plot_multivariate(df=df_sliced,
                                x_col=x_col,
                                y_col_style_dict=sliced_y_col_style_dict)
        data = data + fig.data

    fig = go.Figure(data=data, layout=layout)

    return fig
示例#8
0
    def fit(
            self,
            X,
            y=None,
            time_col=cst.TIME_COL,
            value_col=cst.VALUE_COL,
            **fit_params):
        """Fits ``Silverkite`` forecast model.

        Parameters
        ----------
        X: `pandas.DataFrame`
            Input timeseries, with timestamp column,
            value column, and any additional regressors.
            The value column is the response, included in
            ``X`` to allow transformation by `sklearn.pipeline`.
        y: ignored
            The original timeseries values, ignored.
            (The ``y`` for fitting is included in ``X``).
        time_col: `str`
            Time column name in ``X``.
        value_col: `str`
            Value column name in ``X``.
        fit_params: `dict`
            additional parameters for null model.
        """
        # Initializes `fit_algorithm_dict` with default values.
        # This cannot be done in __init__ to remain compatible
        # with sklearn grid search.
        default_fit_algorithm_dict = {
            "fit_algorithm": "linear",
            "fit_algorithm_params": None}
        self.fit_algorithm_dict = update_dictionary(
            default_fit_algorithm_dict,
            overwrite_dict=self.fit_algorithm_dict)

        # fits null model
        super().fit(
            X=X,
            y=y,
            time_col=time_col,
            value_col=value_col,
            **fit_params)

        self.model_dict = self.silverkite.forecast(
            df=X,
            time_col=time_col,
            value_col=value_col,
            origin_for_time_vars=self.origin_for_time_vars,
            extra_pred_cols=self.extra_pred_cols,
            train_test_thresh=self.train_test_thresh,
            training_fraction=self.training_fraction,
            fit_algorithm=self.fit_algorithm_dict["fit_algorithm"],
            fit_algorithm_params=self.fit_algorithm_dict["fit_algorithm_params"],
            daily_event_df_dict=self.daily_event_df_dict,
            fs_components_df=self.fs_components_df,
            autoreg_dict=self.autoreg_dict,
            lagged_regressor_dict=self.lagged_regressor_dict,
            changepoints_dict=self.changepoints_dict,
            seasonality_changepoints_dict=self.seasonality_changepoints_dict,
            changepoint_detector=self.changepoint_detector,
            min_admissible_value=self.min_admissible_value,
            max_admissible_value=self.max_admissible_value,
            uncertainty_dict=self.uncertainty_dict,
            normalize_method=self.normalize_method,
            adjust_anomalous_dict=self.adjust_anomalous_dict,
            impute_dict=self.impute_dict,
            regression_weight_col=self.regression_weight_col,
            forecast_horizon=self.forecast_horizon,
            simulation_based=self.simulation_based)
        # sets attributes based on ``self.model_dict``
        super().finish_fit()

        return self