if task == 'house_price': input_data = region_grid.load_housing_data(c['housing_data_file']) re_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, c['embedding_file']) autoencoder_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, c['autoencoder_embedding_file']) gcn_skipgram_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, gcn_sg_embed) gcn_flow_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, gcn_flow_embed) gcn_all_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, gcn_all_embed) gcn_ae_concat_mod = HousePriceModel(region_grid.idx_coor_map, c, n_epochs, c['autoencoder_embedding_file'], gcn_all_embed) elif task == 'check_in': input_data = region_grid.get_checkin_counts(metric="mean") # init prediction models re_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, c['embedding_file']) gcn_all_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, gcn_all_embed) gcn_skipgram_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, gcn_sg_embed) gcn_flow_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, gcn_flow_embed) gcn_ae_concat_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, c['autoencoder_embedding_file'], gcn_all_embed) autoencoder_mod = CheckinModel(region_grid.idx_coor_map, c, n_epochs, c['autoencoder_embedding_file']) else: raise NotImplementedError("User must input task: {'house_price', or 'check_in}'") # get features
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from config import get_config from grid.create_grid import RegionGrid import numpy as np import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') import geopandas as gpd c = get_config() region_grid = RegionGrid(config=c) house_price = region_grid.load_housing_data(c['housing_data_file']) print(house_price.head()) checkin = region_grid.get_checkin_counts(metric="mean") trim = np.percentile(house_price['priceSqft'], 99) print(trim) house_price = house_price[house_price['priceSqft'] < trim] house_price.to_csv(c['data_dir_main'] + 'zillow_house_price_trim.csv', index=False) checkin.to_csv(c['data_dir_main'] + "checkin.csv", index=False) print(checkin.head()) #checkin.checkins.hist() #plt.show() #plt.clf() #house_price['priceSqft'].hist(bins=50)