def test_becke_transform(self): """Test becke transformation.""" btf = BeckeTF(0.1, 1.1) tf_array = btf.transform(self.array) single_v = btf.transform(self.num) single_v2 = btf.transform(self.num_2) new_array = btf.inverse(tf_array) assert_allclose(new_array, self.array) assert_allclose(tf_array[0], single_v) assert_allclose(tf_array[-1], single_v2) # test tf and inverse self._transform_and_inverse(-1, 1, btf)
def test_becke_parameter_calc(self): """Test parameter function.""" R = BeckeTF.find_parameter(self.array, 0.1, 1.2) # R = 1.1 assert np.isclose(R, 1.1) btf = BeckeTF(0.1, R) tf_array = btf.transform(self.array) assert tf_array[9] == 1.2 # for even number of grid R = BeckeTF.find_parameter(self.array_2, 0.2, 1.3) btf_2 = BeckeTF(0.2, R) tf_elemt = btf_2.transform( np.array([(self.array_2[4] + self.array_2[5]) / 2])) assert_allclose(tf_elemt, 1.3)
def test_becke_transform_f0_ode(self): """Test same result for 3rd order ode with becke tf and fx term.""" btf = BeckeTF(0.1, 10) x = np.linspace(-0.9, 0.9, 20) btf = BeckeTF(0.1, 5) ibtf = InverseTF(btf) r = btf.transform(x) y = np.random.rand(2, x.size) coeff = [-1, -1, 2] def fx(x): return -1 / x ** 2 def func(x, y): dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx) return np.vstack((*y[1:], dy_dx)) def bc(ya, yb): return np.array([ya[0], yb[0]]) res = solve_bvp(func, bc, x, y) def func_ref(x, y): dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x)) return np.vstack((*y[1:], dy_dx)) res_ref = solve_bvp(func_ref, bc, r, y) assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
def test_errors_assert(self): """Test errors raise.""" # parameter error with self.assertRaises(ValueError): BeckeTF.find_parameter(np.arange(5), 0.5, 0.1) # transform non array type with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform(0.5) # inverse init error with self.assertRaises(TypeError): InverseTF(0.5) # type error for transform_grid with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform_grid(np.arange(3))
def test_becke_infinite(self): """Test becke transformation when inf generated.""" inf_array = np.linspace(-1, 1, 21) R = BeckeTF.find_parameter(inf_array, 0.1, 1.2) btf = BeckeTF(0.1, R) tf_array = btf.transform(inf_array, trim_inf=True) inv_array = btf.inverse(tf_array) assert_allclose(inv_array, inf_array)
def test_errors_assert(self): """Test errors raise.""" # parameter error with self.assertRaises(ValueError): BeckeTF.find_parameter(np.arange(5), 0.5, 0.1) # transform non array type with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform("dafasdf") # inverse init error with self.assertRaises(TypeError): InverseTF(0.5) # type error for transform_1d_grid with self.assertRaises(TypeError): btf = BeckeTF(0.1, 1.1) btf.transform_1d_grid(np.arange(3)) with self.assertRaises(ZeroDivisionError): btf = BeckeTF(0.1, 0) itf = InverseTF(btf) itf._d1(0.5) with self.assertRaises(ZeroDivisionError): btf = BeckeTF(0.1, 0) itf = InverseTF(btf) itf._d1(np.array([0.1, 0.2, 0.3]))
def test_solver_ode_coeff_a_f_x_with_tf(self): """Test ode with a(x) and f(x) involved.""" x = np.linspace(-0.999, 0.999, 20) btf = BeckeTF(0.1, 5) r = btf.transform(x) ibtf = InverseTF(btf) def fx(x): return 0 * x coeffs = [lambda x: x ** 2, lambda x: 1 / x ** 2, 0.5] bd_cond = [(0, 0, 0), (1, 0, 0)] # calculate diff equation wt/w tf. res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf) res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond) assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
def test_solver_ode_bvp_with_tf(self): """Test result for high level api solve_ode with fx term.""" x = np.linspace(-0.999, 0.999, 20) btf = BeckeTF(0.1, 5) r = btf.transform(x) ibtf = InverseTF(btf) def fx(x): return 1 / x ** 2 coeffs = [-1, 1, 1] bd_cond = [(0, 0, 0), (1, 0, 0)] # calculate diff equation wt/w tf. res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf) res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond) assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
def test_becke_infinite(self): """Test becke transformation when inf generated.""" inf_array = np.linspace(-1, 1, 21) R = BeckeTF.find_parameter(inf_array, 0.1, 1.2) btf = BeckeTF(0.1, R, trim_inf=True) tf_array = btf.transform(inf_array) inv_array = btf.inverse(tf_array) assert_allclose(inv_array, inf_array) # extra test for neg inf # test for number result = btf._convert_inf(-np.inf) assert_almost_equal(result, -1e16) result = btf._convert_inf(np.inf) assert_almost_equal(result, 1e16) # test for array test_array = np.random.rand(5) test_array[3] = -np.inf result = btf._convert_inf(test_array) assert_almost_equal(result[3], -1e16) test_array[3] = np.inf result = btf._convert_inf(test_array) assert_almost_equal(result[3], 1e16)
def test_becke_inverse(self): """Test inverse transform basic function.""" btf = BeckeTF(0.1, 1.1) inv = InverseTF(btf) new_array = inv.transform(btf.transform(self.array)) assert_allclose(new_array, self.array)
def test_poisson_solve(self): """Test the poisson solve function.""" oned = GaussChebyshev(30) oned = GaussChebyshev(50) btf = BeckeTF(1e-7, 1.5) rad = btf.transform_1d_grid(oned) l_max = 7 atgrid = AtomGrid(rad, degrees=[l_max]) value_array = self.helper_func_gauss(atgrid.points) p_0 = atgrid.integrate(value_array) # test density sum up to np.pi**(3 / 2) assert_allclose(p_0, np.pi**1.5, atol=1e-4) sph_coor = atgrid.convert_cart_to_sph()[:, 1:3] spls_mt = Poisson._proj_sph_value( atgrid.rgrid, sph_coor, l_max // 2, value_array, atgrid.weights, atgrid.indices, ) # test splines project fit gauss function well def gauss(r): return np.exp(-(r**2)) for _ in range(20): coors = np.random.rand(10, 3) r = np.linalg.norm(coors, axis=-1) spl_0_0 = spls_mt[0, 0] interp_v = spl_0_0(r) ref_v = gauss(r) * np.sqrt(4 * np.pi) # 0.28209479 is the value in spherical harmonic Z_0_0 assert_allclose(interp_v, ref_v, atol=1e-3) ibtf = InverseTF(btf) linsp = np.linspace(-1, 0.99, 50) bound = p_0 * np.sqrt(4 * np.pi) res_bv = Poisson.solve_poisson_bv(spls_mt[0, 0], linsp, bound, tfm=ibtf) near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2]) near_tf_pts = ibtf.transform(near_rg_pts) long_rg_pts = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10]) long_tf_pts = ibtf.transform(long_rg_pts) short_res = res_bv(near_tf_pts)[0] / near_rg_pts / (2 * np.sqrt(np.pi)) long_res = res_bv(long_tf_pts)[0] / long_rg_pts / (2 * np.sqrt(np.pi)) # ref are calculated with mathemetical # integrate[exp[-x^2 - y^2 - z^2] / sqrt[(x - a)^2 + y^2 +z^2], range] ref_short_res = [ 6.28286, # 0.01 6.26219, # 0.1 6.20029, # 0.2 6.09956, # 0.3 5.79652, # 0.5 5.3916, # 0.7 4.69236, # 1.0 4.22403, # 1.2 ] ref_long_res = [ 2.77108, # 2 1.85601, # 3 1.39203, # 4 1.11362, # 5 0.92802, # 6 0.79544, # 7 0.69601, # 8 0.61867, # 9 0.55680, # 10 ] assert_allclose(short_res, ref_short_res, atol=5e-4) assert_allclose(long_res, ref_long_res, atol=5e-4) # solve same poisson equation with gauss directly gauss_pts = btf.transform(linsp) res_gs = Poisson.solve_poisson_bv(gauss, gauss_pts, p_0) gs_int_short = res_gs(near_rg_pts)[0] / near_rg_pts gs_int_long = res_gs(long_rg_pts)[0] / long_rg_pts assert_allclose(gs_int_short, ref_short_res, 5e-4) assert_allclose(gs_int_long, ref_long_res, 5e-4)
def test_becke_transform(self): """Test becke transformation.""" btf = BeckeTF(0.1, 1.1) tf_array = btf.transform(self.array) new_array = btf.inverse(tf_array) assert_allclose(new_array, self.array)