def test_multi_topo(self):
        self.agent_name = "multiTopology-baseline"
        self.scenario_name = "000"
        self.episode_data = EpisodeData.from_disk(
            os.path.join(self.agents_path, self.agent_name), self.scenario_name
        )
        self.episode_analytics = EpisodeAnalytics(
            self.episode_data, self.scenario_name, self.agent_name
        )

        nb_actions = self.episode_analytics.action_data_table[
            ["action_line", "action_subs"]
        ].sum()
        self.assertEqual(nb_actions.action_line, 25.0)
        self.assertEqual(nb_actions.action_subs, 38.0)

        action_per_line = get_action_per_line(self.episode_analytics)
        action_per_sub = get_action_per_sub(self.episode_analytics)

        # We need to sort the labels for which values are equal.
        # Otherwise, the output is random.
        self.assertListEqual(sorted(action_per_sub[0].x.tolist()), ["sub_3", "sub_5"])
        self.assertListEqual(action_per_sub[0].y.tolist(), [19, 19])
        self.assertListEqual(action_per_line[0].x.tolist(), ["3_6_15", "9_10_12"])
        self.assertListEqual(action_per_line[0].y.tolist(), [13, 12])

        self.assertListEqual(
            self.episode_analytics.action_data_table.action_id[:5].tolist(),
            [0, 1, 1, 2, 3],
        )
        self.assertListEqual(
            self.episode_analytics.action_data_table.distance[:5].tolist(),
            [1, 2, 2, 0, 3],
        )
示例#2
0
class TestGenerateAgent(unittest.TestCase):
    def setUp(self):
        self.case = "rte_case14_realistic"
        self.backend = PandaPowerBackend()
        self.param = Parameters()

        self.agents_path = agents_path
        self.agent_name = "redispatching-baseline"
        self.scenario_name = "000"

    def test_generate_and_read_agent_redisp(self):
        with make(self.case, param=self.param, backend=self.backend) as env:
            agent = RandomRedispatchAgent(env.action_space, env)
            runner = Runner(**env.get_params_for_runner(),
                            agentClass=None,
                            agentInstance=agent)
            # need to be seeded for reproducibility as this takes random redispatching actions
            runner.run(
                nb_episode=1,
                path_save=os.path.join(self.agents_path, self.agent_name),
                nb_process=1,
                max_iter=10,
                env_seeds=[0],
                agent_seeds=[0],
                pbar=True,
            )
            env.close()

        self.episode_data = EpisodeData.from_disk(
            os.path.join(self.agents_path, self.agent_name),
            self.scenario_name)
        self.episode_analytics = EpisodeAnalytics(self.episode_data,
                                                  self.scenario_name,
                                                  self.agent_name)
    def setUp(self):
        parser = configparser.ConfigParser()
        parser.read(config_file_path)

        self.agents_path = parser.get("DEFAULT", "agents_dir")
        self.cache_dir = os.path.join(self.agents_path, "_cache")
        if not os.path.isdir(self.cache_dir):
            from tests.test_make_cache import TestMakeCache

            test_make_cache = TestMakeCache()
            test_make_cache.setUp()
            test_make_cache.test_make_cache()
        self.agent_name = "do-nothing-baseline"
        self.scenario_name = "000"
        self.env_path = parser.get("DEFAULT", "env_dir")
        p = Parameters()
        p.NO_OVERFLOW_DISCONNECTION = False
        self.env = make(
            self.env_path,
            backend=PandaPowerBackend(),
            test=True,
            param=p,
        )
        self.env.seed(0)
        params_for_runner = self.env.get_params_for_runner()
        params_to_fetch = ["init_grid_path"]
        self.params_for_reboot = {
            key: value
            for key, value in params_for_runner.items()
            if key in params_to_fetch
        }
        self.params_for_reboot["parameters"] = p

        cache_file = os.path.join(self.cache_dir, self.scenario_name,
                                  self.agent_name + ".dill")
        try:
            with open(cache_file, "rb") as f:
                episode_analytics = dill.load(f)
        except:
            episode_analytics = EpisodeAnalytics(self.episode_data,
                                                 self.scenario_name,
                                                 self.agent_name)
        self.episode_data = EpisodeData.from_disk(
            os.path.join(self.agents_path, self.agent_name),
            self.scenario_name)
        episode_analytics.decorate(self.episode_data)
        self.episode = episode_analytics
        self.act = self.env.action_space()
        self.expert_config = {
            "totalnumberofsimulatedtopos": 25,
            "numberofsimulatedtopospernode": 5,
            "maxUnusedLines": 2,
            "ratioToReconsiderFlowDirection": 0.75,
            "ratioToKeepLoop": 0.25,
            "ThersholdMinPowerOfLoop": 0.1,
            "ThresholdReportOfLine": 0.2,
        }
        self.obs_reboot = None
        self.reward_type = "MinMargin_reward"
示例#4
0
    def load(self,
             backend,
             agent_path=None,
             name=None,
             data=None,
             env_kwargs={}):
        if data is None:
            if agent_path is not None and name is not None:
                self.episode_data = EpisodeData.from_disk(agent_path, name)
            else:
                raise Grid2OpException(
                    "To replay an episode you need at least to provide an EpisodeData "
                    "(using the keyword argument \"data=...\") or provide the path and name where "
                    "the "
                    "episode is stored (keyword arguments \"agent_path\" and \"name\")."
                )
        else:
            self.episode_data = copy.deepcopy(data)
            self.episode_data.reboot()

        self.chronics_handler = ChronicsHandler(chronicsClass=_GridFromLog,
                                                episode_data=self.episode_data)

        if "chronics_handler" in env_kwargs:
            del env_kwargs["chronics_handler"]
        if "backend" in env_kwargs:
            del env_kwargs["backend"]
        if "opponent_class" in env_kwargs:
            del env_kwargs["opponent_class"]
        if "name" in env_kwargs:
            del env_kwargs["name"]

        nm = "unknonwn"
        seed = None
        with open(os.path.join(agent_path, name, "episode_meta.json")) as f:
            dict_ = json.load(f)
            nm = re.sub("Environment_", "", dict_["env_type"])
            if dict_["env_seed"] is not None:
                seed = int(dict_["env_seed"])

        self.env = Environment(**env_kwargs,
                               backend=backend,
                               chronics_handler=self.chronics_handler,
                               opponent_class=OpponentFromLog,
                               name=nm)
        if seed is not None:
            self.env.seed(seed)

        tmp = self.env.reset()

        # always have the two bellow synch ! otherwise it messes up the "chronics"
        # in the env, when calling "env.step"
        self.current_time_step = 0
        self.env.chronics_handler.real_data.curr_iter = 0

        # first observation of the scenario
        current_obs = self.episode_data.observations[self.current_time_step]
        self._assign_state(current_obs)
        return self.env.get_obs()
示例#5
0
    def setUp(self):
        parser = configparser.ConfigParser()
        parser.read(config_file_path)

        self.agents_path = parser.get("DEFAULT", "agents_dir")
        self.cache_dir = os.path.join(self.agents_path, "_cache")
        if not os.path.isdir(self.cache_dir):
            from tests.test_make_cache import TestMakeCache

            test_make_cache = TestMakeCache()
            test_make_cache.setUp()
            test_make_cache.test_make_cache()
        self.agent_name = "do-nothing-baseline"
        self.scenario_name = "000"
        self.env_path = parser.get("DEFAULT", "env_dir")
        p = Parameters()
        p.NO_OVERFLOW_DISCONNECTION = False
        self.env = make(
            self.env_path,
            backend=PandaPowerBackend(),
            test=True,
            param=p,
        )
        self.env.seed(0)
        params_for_runner = self.env.get_params_for_runner()
        params_to_fetch = ["init_grid_path"]
        self.params_for_reboot = {
            key: value
            for key, value in params_for_runner.items()
            if key in params_to_fetch
        }
        self.params_for_reboot["parameters"] = p

        cache_file = os.path.join(self.cache_dir, self.scenario_name,
                                  self.agent_name + ".dill")
        try:
            with open(cache_file, "rb") as f:
                episode_analytics = dill.load(f)
        except:
            episode_analytics = EpisodeAnalytics(self.episode_data,
                                                 self.scenario_name,
                                                 self.agent_name)
        self.episode_data = EpisodeData.from_disk(
            os.path.join(self.agents_path, self.agent_name),
            self.scenario_name)
        episode_analytics.decorate(self.episode_data)
        self.episode = episode_analytics
        self.episode_reboot = EpisodeReboot.EpisodeReboot()
        self.episode_reboot.load(
            self.env.backend,
            data=self.episode,
            agent_path=os.path.join(self.agents_path, self.agent_name),
            name=self.episode.episode_name,
            env_kwargs=self.params_for_reboot,
        )
        self.obs, *_ = self.episode_reboot.go_to(1895)
        self.act = self.env.action_space()
 def setUp(self):
     self.agents_path = agents_path
     self.agent_name = "greedy-baseline"
     self.scenario_name = "000"
     self.episode_data = EpisodeData.from_disk(
         os.path.join(self.agents_path, self.agent_name), self.scenario_name
     )
     self.episode_analytics = EpisodeAnalytics(
         self.episode_data, self.scenario_name, self.agent_name
     )
示例#7
0
    def test_plot(self):
        self.episode_data = EpisodeData.from_disk(
            os.path.join(self.agents_path, self.agent_name), self.scenario_name
        )
        self.episode_analytics = EpisodeAnalytics(
            self.episode_data, self.scenario_name, self.agent_name
        )
        self.episode_analytics.decorate(self.episode_data)

        make_network(self.episode_analytics).plot_obs(self.episode_analytics.observations[0])
示例#8
0
    def replay_episode(self,
                       episode_id,
                       fps=2.0,
                       gif_name=None,
                       display=True,
                       start_step=0,
                       end_step=-1,
                       line_info="rho",
                       load_info="p",
                       gen_info="p",
                       resolution=(1280, 720)):
        """
        When called, this function will start the display of the episode in a "mini movie" format.

        Parameters
        ----------
        episode_id: ``str``
            ID of the episode to replay

        fps: ``float``
            Frames per second. When it's low, you will have more time to look at each frame, but the episode
            will last longer. When it's high, episode will be faster, but frames will stay less time on the screen.

        gif_name: ``str``
            If provided, a .gif file is saved in the episode folder with the name :gif_name:. 
            The .gif extension is appened by this function

        start_step: ``int``
            Default to 0. The step at which to start generating the gif

        end_step: ``int``
            Default to -1. The step at which to stop generating the gif.
            Set to -1 to specify no limit

        load_info: ``str``
            Defaults to "p". What kind of values to show on loads.
            Can be oneof `["p", "v", None]`

        gen_info: ``str``
            Defaults to "p". What kind of values to show on generators.
            Can be oneof `["p", "v", None]`

        line_info: ``str``
            Defaults to "rho". What kind of values to show on lines.
            Can be oneof `["rho", "a", "p", "v", None]` 

        resolution: ``tuple``
            Defaults to (1280, 720). The resolution to use for the gif.
        """
        # Check args
        path_ep = os.path.join(self.agent_path, episode_id)
        if not os.path.exists(path_ep):
            raise Grid2OpException(
                "No episode is found at \"{}\".".format(path_ep))

        # Load episode observations
        self.episode_data = EpisodeData.from_disk(agent_path=self.agent_path,
                                                  name=episode_id)
        all_obs = [el for el in self.episode_data.observations]
        # Create a plotter
        width, height = resolution
        plot_runner = PlotMatplot(self.episode_data.observation_space,
                                  width=width,
                                  height=height,
                                  load_name=False,
                                  gen_name=False)

        # Some vars for gif export if enabled
        frames = []
        gif_path = None
        if gif_name is not None:
            gif_path = os.path.join(path_ep, gif_name + ".gif")

        # Render loop
        figure = None
        time_per_frame = 1.0 / fps
        for step, obs in enumerate(all_obs):
            # Skip up to start_step
            if step < start_step:
                continue
            # Terminate if reached end_step
            if end_step > 0 and step >= end_step:
                break
            # Get a timestamp for current frame
            start_time = time.time()

            # Render the observation
            fig = plot_runner.plot_obs(observation=obs,
                                       line_info=line_info,
                                       gen_info=gen_info,
                                       load_info=load_info,
                                       figure=figure,
                                       redraw=True)
            if figure is None and display:
                fig.show()
            elif display:
                fig.canvas.draw()

            # Store figure for re-use
            figure = fig
            # Save pixel array if needed
            if gif_name is not None:
                frames.append(plot_runner.convert_figure_to_numpy_HWC(figure))

            # Get the timestamp after frame is rendered
            end_time = time.time()
            delta_time = end_time - start_time

            # Cap fps for display mode
            if display:
                wait_time = time_per_frame - delta_time
                if wait_time > 0.0:
                    time.sleep(wait_time)

        # Export all frames as gif if enabled
        if gif_name is not None and len(frames) > 0:
            try:
                imageio.mimwrite(gif_path, frames, fps=fps)
                # Try to compress
                try:
                    from pygifsicle import optimize
                    optimize(gif_path, options=["-w", "--no-conserve-memory"])
                except:
                    warn_msg = "Failed to optimize .GIF size, but gif is still saved:\n" \
                               "Install dependencies to reduce size by ~3 folds\n" \
                               "apt-get install gifsicle && pip3 install pygifsicle"
                    warnings.warn(warn_msg)
            except Exception as e:
                warnings.warn(
                    "Impossible to save gif with error :\n{}".format(e))
示例#9
0
    def replay_episode(self, episode_id, fps=2.0, gif_name=None, display=True):
        """
        When called, this function will start the display of the episode in a "mini movie" format.

        Parameters
        ----------
        episode_id: ``str``
            ID of the episode to replay

        fps: ``float``
            Frames per second. When it's low, you will have more time to look at each frame, but the episode
            will last longer. When it's high, episode will be faster, but frames will stay less time on the screen.

        gif_name: ``str``
            If provided, a .gif file is saved in the episode folder with the name :gif_name:. 
            The .gif extension is appened by this function
        """
        # Check args
        path_ep = os.path.join(self.agent_path, episode_id)
        if not os.path.exists(path_ep):
            raise Grid2OpException(
                "No episode is found at \"{}\".".format(path_ep))

        # Load episode observations
        self.episode_data = EpisodeData.from_disk(agent_path=self.agent_path,
                                                  name=episode_id)
        all_obs = [el for el in self.episode_data.observations]

        # Create a plotter
        plot_runner = PlotMatplot(self.episode_data.observation_space)

        # Some vars for gif export if enabled
        frames = []
        gif_path = None
        if gif_name is not None:
            gif_path = os.path.join(path_ep, gif_name + ".gif")

        # Render loop
        figure = None
        time_per_frame = 1.0 / fps
        for obs in all_obs:
            # Get a timestamp for current frame
            start_time = time.time()

            # Render the observation
            fig = plot_runner.plot_obs(observation=obs,
                                       figure=figure,
                                       redraw=True)
            if figure is None and display:
                fig.show()
            elif display:
                fig.canvas.draw()

            # Store figure for re-use
            figure = fig
            # Save pixel array if needed
            if gif_name is not None:
                frames.append(plot_runner.convert_figure_to_numpy_HWC(figure))

            # Get the timestamp after frame is rendered
            end_time = time.time()
            delta_time = end_time - start_time

            # Cap fps for display mode
            if display:
                wait_time = time_per_frame - delta_time
                if wait_time > 0.0:
                    time.sleep(wait_time)

        # Export all frames as gif if enabled
        if gif_name is not None:
            imageio.mimwrite(gif_path, frames, fps=fps)
            # Try to compress
            try:
                from pygifsicle import optimize
                optimize(gif_path, options=["-w", "--no-conserve-memory"])
            except:
                warn_msg = "Failed to optimize .GIF size, but gif is still saved:\n" \
                           "Install dependencies to reduce size by ~3 folds\n" \
                           "apt-get install gifsicle && pip3 install pygifsicle"
                warnings.warn(warn_msg)