class Environment(BaseEnv): """ This class is the grid2op implementation of the "Environment" entity in the RL framework. Attributes ---------- name: ``str`` The name of the environment action_space: :class:`grid2op.Action.ActionSpace` Another name for :attr:`Environment.helper_action_player` for gym compatibility. observation_space: :class:`grid2op.Observation.ObservationSpace` Another name for :attr:`Environment.helper_observation` for gym compatibility. reward_range: ``(float, float)`` The range of the reward function metadata: ``dict`` For gym compatibility, do not use spec: ``None`` For Gym compatibility, do not use viewer: ``object`` Used to display the powergrid. Currently not supported. """ def __init__(self, init_grid_path: str, chronics_handler, backend, parameters, name="unknown", names_chronics_to_backend=None, actionClass=TopologyAction, observationClass=CompleteObservation, rewardClass=FlatReward, legalActClass=AlwaysLegal, voltagecontrolerClass=ControlVoltageFromFile, other_rewards={}, thermal_limit_a=None, with_forecast=True, epsilon_poly=1e-4, # precision of the redispatching algorithm we don't recommend to go above 1e-4 tol_poly=1e-2, # i need to compute a redispatching if the actual values are "more than tol_poly" the values they should be opponent_action_class=DontAct, opponent_class=BaseOpponent, opponent_init_budget=0., opponent_budget_per_ts=0., opponent_budget_class=NeverAttackBudget, opponent_attack_duration=0, opponent_attack_cooldown=99999, kwargs_opponent={}, _raw_backend_class=None ): BaseEnv.__init__(self, parameters=parameters, thermal_limit_a=thermal_limit_a, epsilon_poly=epsilon_poly, tol_poly=tol_poly, other_rewards=other_rewards, with_forecast=with_forecast, voltagecontrolerClass=voltagecontrolerClass, opponent_action_class=opponent_action_class, opponent_class=opponent_class, opponent_budget_class=opponent_budget_class, opponent_init_budget=opponent_init_budget, opponent_budget_per_ts=opponent_budget_per_ts, opponent_attack_duration=opponent_attack_duration, opponent_attack_cooldown=opponent_attack_cooldown, kwargs_opponent=kwargs_opponent) if name == "unknown": warnings.warn("It is NOT recommended to create an environment without \"make\" and EVEN LESS " "to use an environment without a name") self.name = name # for gym compatibility (initialized below) self.action_space = None self.observation_space = None self.reward_range = None self.viewer = None self.metadata = None self.spec = None if _raw_backend_class is None: self._raw_backend_class = type(backend) else: self._raw_backend_class = _raw_backend_class # for plotting self._init_backend(init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass) def get_path_env(self): """ Get the path that allows to create this environment. It can be used for example in `grid2op.utils.underlying_statistics` to save the information directly inside the environment data. """ return os.path.split(self._init_grid_path)[0] def _init_backend(self, init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass): """ .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Create a proper and valid environment. """ if not isinstance(rewardClass, type): raise Grid2OpException("Parameter \"rewardClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(rewardClass))) if not issubclass(rewardClass, BaseReward): raise Grid2OpException("Parameter \"rewardClass\" used to build the Environment should derived form " "the grid2op.BaseReward class, type provided is \"{}\"".format(type(rewardClass))) self._rewardClass = rewardClass self._actionClass = actionClass self._observationClass = observationClass # backend self._init_grid_path = os.path.abspath(init_grid_path) if not isinstance(backend, Backend): raise Grid2OpException( "Parameter \"backend\" used to build the Environment should derived form the " "grid2op.Backend class, type provided is \"{}\"".format(type(backend))) self.backend = backend # all the above should be done in this exact order, otherwise some weird behaviour might occur # this is due to the class attribute self.backend.set_env_name(self.name) self.backend.load_grid(self._init_grid_path) # the real powergrid of the environment self.backend.load_redispacthing_data(os.path.split(self._init_grid_path)[0]) self.backend.load_grid_layout(os.path.split(self._init_grid_path)[0]) self.backend.assert_grid_correct() self._has_been_initialized() # really important to include this piece of code! and just here after the # backend has loaded everything self._line_status = np.ones(shape=self.n_line, dtype=dt_bool) if self._thermal_limit_a is None: self._thermal_limit_a = self.backend.thermal_limit_a.astype(dt_float) else: self.backend.set_thermal_limit(self._thermal_limit_a.astype(dt_float)) *_, tmp = self.backend.generators_info() # rules of the game if not isinstance(legalActClass, type): raise Grid2OpException("Parameter \"legalActClass\" used to build the Environment should be a type " "(a class) and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(legalActClass, BaseRules): raise Grid2OpException( "Parameter \"legalActClass\" used to build the Environment should derived form the " "grid2op.BaseRules class, type provided is \"{}\"".format( type(legalActClass))) self._game_rules = RulesChecker(legalActClass=legalActClass) self._legalActClass = legalActClass # action helper if not isinstance(actionClass, type): raise Grid2OpException("Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(actionClass, BaseAction): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should derived form the " "grid2op.BaseAction class, type provided is \"{}\"".format( type(actionClass))) if not isinstance(observationClass, type): raise Grid2OpException("Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(observationClass, BaseObservation): raise Grid2OpException( "Parameter \"observationClass\" used to build the Environment should derived form the " "grid2op.BaseObservation class, type provided is \"{}\"".format( type(observationClass))) # action affecting the grid that will be made by the agent self._helper_action_class = ActionSpace.init_grid(gridobj=self.backend) self._helper_action_player = self._helper_action_class(gridobj=self.backend, actionClass=actionClass, legal_action=self._game_rules.legal_action) # action that affect the grid made by the environment. self._helper_action_env = self._helper_action_class(gridobj=self.backend, actionClass=CompleteAction, legal_action=self._game_rules.legal_action) self._helper_observation_class = ObservationSpace.init_grid(gridobj=self.backend) self._helper_observation = self._helper_observation_class(gridobj=self.backend, observationClass=observationClass, rewardClass=rewardClass, env=self) # handles input data if not isinstance(chronics_handler, ChronicsHandler): raise Grid2OpException( "Parameter \"chronics_handler\" used to build the Environment should derived form the " "grid2op.ChronicsHandler class, type provided is \"{}\"".format( type(chronics_handler))) self.chronics_handler = chronics_handler self.chronics_handler.initialize(self.name_load, self.name_gen, self.name_line, self.name_sub, names_chronics_to_backend=names_chronics_to_backend) self.names_chronics_to_backend = names_chronics_to_backend # test to make sure the backend is consistent with the chronics generator self.chronics_handler.check_validity(self.backend) # reward function self._reward_helper = RewardHelper(self._rewardClass) self._reward_helper.initialize(self) for k, v in self.other_rewards.items(): v.initialize(self) # controler for voltage if not issubclass(self._voltagecontrolerClass, BaseVoltageController): raise Grid2OpException("Parameter \"voltagecontrolClass\" should derive from \"ControlVoltageFromFile\".") self._voltage_controler = self._voltagecontrolerClass(gridobj=self.backend, controler_backend=self.backend) # create the opponent # At least the 3 following attributes should be set before calling _create_opponent self._create_opponent() # performs one step to load the environment properly (first action need to be taken at first time step after # first injections given) self._reset_maintenance() self._reset_redispatching() do_nothing = self._helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException("Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) # test the backend returns object of the proper size self.backend.assert_grid_correct_after_powerflow() # for gym compatibility self.action_space = self._helper_action_player # this should be an action !!! self.observation_space = self._helper_observation # this return an observation. self.reward_range = self._reward_helper.range() self.viewer = None self.viewer_fig = None self.metadata = {'render.modes': []} self.spec = None self.current_reward = self.reward_range[0] self.done = False # reset everything to be consistent self._reset_vectors_and_timings() def _voltage_control(self, agent_action, prod_v_chronics): """ .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ Update the environment action "action_env" given a possibly new voltage setpoint for the generators. This function can be overide for a more complex handling of the voltages. It must update (if needed) the voltages of the environment action :attr:`BaseEnv.env_modification` Parameters ---------- agent_action: :class:`grid2op.Action.Action` The action performed by the player (or do nothing is player action were not legal or ambiguous) prod_v_chronics: ``numpy.ndarray`` or ``None`` The voltages that has been specified in the chronics """ volt_control_act = self._voltage_controler.fix_voltage(self.current_obs, agent_action, self._env_modification, prod_v_chronics) return volt_control_act def set_chunk_size(self, new_chunk_size): """ For an efficient data pipeline, it can be usefull to not read all part of the input data (for example for load_p, prod_p, load_q, prod_v). Grid2Op support the reading of large chronics by "chunk" of given size. Reading data in chunk can also reduce the memory footprint, useful in case of multiprocessing environment while large chronics. It is critical to set a small chunk_size in case of training machine learning algorithm (reinforcement learning agent) at the beginning when the agent performs poorly, the software might spend most of its time loading the data. **NB** this has no effect if the chronics does not support this feature. **NB** The environment need to be **reset** for this to take effect (it won't affect the chronics already loaded) Parameters ---------- new_chunk_size: ``int`` or ``None`` The new chunk size (positive integer) Examples --------- Here is an example on how to use this function .. code-block:: python import grid2op # I create an environment env = grid2op.make("rte_case5_example", test=True) env.set_chunk_size(100) # and now data will be read from the hard drive 100 time steps per 100 time steps # instead of the whole episode at once. """ if new_chunk_size is None: self.chronics_handler.set_chunk_size(new_chunk_size) return try: new_chunk_size = int(new_chunk_size) except Exception as e: raise Grid2OpException("Impossible to set the chunk size. It should be convertible a integer, and not" "{}".format(new_chunk_size)) if new_chunk_size <= 0: raise Grid2OpException("Impossible to read less than 1 data at a time. Please make sure \"new_chunk_size\"" "is a positive integer.") self.chronics_handler.set_chunk_size(new_chunk_size) def set_id(self, id_): """ Set the id that will be used at the next call to :func:`Environment.reset`. **NB** this has no effect if the chronics does not support this feature. **NB** The environment need to be **reset** for this to take effect. Parameters ---------- id_: ``int`` the id of the chronics used. Examples -------- Here an example that will loop 10 times through the same chronics (always using the same injection then): .. code-block:: python import grid2op from grid2op import make from grid2op.BaseAgent import DoNothingAgent env = make("rte_case14_realistic") # create an environment agent = DoNothingAgent(env.action_space) # create an BaseAgent for i in range(10): env.set_id(0) # tell the environment you simply want to use the chronics with ID 0 obs = env.reset() # it is necessary to perform a reset reward = env.reward_range[0] done = False while not done: act = agent.act(obs, reward, done) obs, reward, done, info = env.step(act) And here you have an example on how you can loop through the scenarios in a given order: .. code-block:: python import grid2op from grid2op import make from grid2op.BaseAgent import DoNothingAgent env = make("rte_case14_realistic") # create an environment agent = DoNothingAgent(env.action_space) # create an BaseAgent scenario_order = [1,2,3,4,5,10,8,6,5,7,78, 8] for id_ in scenario_order: env.set_id(id_) # tell the environment you simply want to use the chronics with ID 0 obs = env.reset() # it is necessary to perform a reset reward = env.reward_range[0] done = False while not done: act = agent.act(obs, reward, done) obs, reward, done, info = env.step(act) """ try: id_ = int(id_) except: raise EnvError("the \"id_\" parameters should be convertible to integer and not be of type {}" "".format(type(id_))) self.chronics_handler.tell_id(id_-1) def attach_renderer(self, graph_layout=None): """ This function will attach a renderer, necessary to use for plotting capabilities. Parameters ---------- graph_layout: ``dict`` Here for backward compatibility. Currently not used. If you want to set a specific layout call :func:`BaseEnv.attach_layout` If ``None`` this class will use the default substations layout provided when the environment was created. Otherwise it will use the data provided. Examples --------- Here is how to use the function .. code-block:: python import grid2op # create the environment env = grid2op.make() if False: # if you want to change the default layout of the powergrid # assign coordinates (0., 0.) to all substations (this is a dummy thing to do here!) layout = {sub_name: (0., 0.) for sub_name in env.name_sub} env.attach_layout(layout) # NB again, this code will make everything look super ugly !!!! Don't change the # default layout unless you have a reason to. # and if you want to use the renderer env.attach_renderer() # and now you can "render" (plot) the state of the grid obs = env.reset() done = False reward = env.reward_range[0] while not done: env.render() action = agent.act(obs, reward, done) obs, reward, done, info = env.step(action) """ # Viewer already exists: skip if self.viewer is not None: return # Do we have the dependency try: from grid2op.PlotGrid import PlotMatplot except ImportError: err_msg = "Cannot attach renderer: missing dependency\n" \ "Please install matplotlib or run pip install grid2op[optional]" raise Grid2OpException(err_msg) from None self.viewer = PlotMatplot(self._helper_observation) self.viewer_fig = None # Set renderer modes self.metadata = {'render.modes': ["human", "silent"]} def __str__(self): return '<{} instance named {}>'.format(type(self).__name__, self.name) # TODO be closer to original gym implementation def reset_grid(self): """ .. warning:: /!\\\\ Internal, do not use unless you know what you are doing /!\\\\ This is automatically called when using `env.reset` Reset the backend to a clean state by reloading the powergrid from the hard drive. This might takes some time. If the thermal has been modified, it also modify them into the new backend. """ self.backend.reset(self._init_grid_path) # the real powergrid of the environment self.backend.assert_grid_correct() if self._thermal_limit_a is not None: self.backend.set_thermal_limit(self._thermal_limit_a.astype(dt_float)) self._backend_action = self._backend_action_class() do_nothing = self._helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException("Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) def add_text_logger(self, logger=None): """ Add a text logger to this :class:`Environment` Logging is for now an incomplete feature, really incomplete (not used) Parameters ---------- logger: The logger to use """ self.logger = logger return self def reset(self): """ Reset the environment to a clean state. It will reload the next chronics if any. And reset the grid to a clean state. This triggers a full reloading of both the chronics (if they are stored as files) and of the powergrid, to ensure the episode is fully over. This method should be called only at the end of an episode. Examples -------- The standard "gym loop" can be done with the following code: .. code-block:: python import grid2op # create the environment env = grid2op.make() # and now you can "render" (plot) the state of the grid obs = env.reset() done = False reward = env.reward_range[0] while not done: action = agent.act(obs, reward, done) obs, reward, done, info = env.step(action) """ super().reset() self.chronics_handler.next_chronics() self.chronics_handler.initialize(self.backend.name_load, self.backend.name_gen, self.backend.name_line, self.backend.name_sub, names_chronics_to_backend=self.names_chronics_to_backend) self._env_modification = None self._reset_maintenance() self._reset_redispatching() self._reset_vectors_and_timings() # it need to be done BEFORE to prevent cascading failure when there has been self.reset_grid() if self.viewer_fig is not None: del self.viewer_fig self.viewer_fig = None # if True, then it will not disconnect lines above their thermal limits self._reset_vectors_and_timings() # and it needs to be done AFTER to have proper timings at tbe beginning # reset the opponent self._oppSpace.reset() return self.get_obs() def render(self, mode='human'): """ Render the state of the environment on the screen, using matplotlib Also returns the Matplotlib figure Examples -------- Rendering need first to define a "renderer" which can be done with the following code: .. code-block:: python import grid2op # create the environment env = grid2op.make() # if you want to use the renderer env.attach_renderer() # and now you can "render" (plot) the state of the grid obs = env.reset() done = False reward = env.reward_range[0] while not done: env.render() # this piece of code plot the grid action = agent.act(obs, reward, done) obs, reward, done, info = env.step(action) """ # Try to create a plotter instance # Does nothing if viewer exists # Raises if matplot is not installed self.attach_renderer() # Check mode is correct if mode not in self.metadata["render.modes"]: err_msg = "Renderer mode \"{}\" not supported. Available modes are {}." raise Grid2OpException(err_msg.format(mode, self.metadata["render.modes"])) # Render the current observation fig = self.viewer.plot_obs(self.current_obs, figure=self.viewer_fig, redraw=True) # First time show for human mode if self.viewer_fig is None and mode == "human": fig.show() else: # Update the figure content fig.canvas.draw() # Store to re-use the figure self.viewer_fig = fig # Return the figure in case it needs to be saved/used return self.viewer_fig def copy(self): """ Performs a deep copy of the environment Unless you have a reason to, it is not advised to make copy of an Environment. Examples -------- It should be used as follow: .. code-block:: python import grid2op env = grid2op.make() cpy_of_env = env.copy() """ tmp_backend = self.backend self.backend = None tmp_obs_space = self._helper_observation self.observation_space = None self._helper_observation = None obs_tmp = self.current_obs self.current_obs = None volt_cont = self._voltage_controler self._voltage_controler = None res = copy.deepcopy(self) res.backend = tmp_backend.copy() res._helper_observation = tmp_obs_space.copy() res.observation_space = res._helper_observation res.current_obs = obs_tmp.copy() res._voltage_controler = volt_cont.copy() if self._thermal_limit_a is not None: res.backend.set_thermal_limit(self._thermal_limit_a) self.backend = tmp_backend self.observation_space = tmp_obs_space self._helper_observation = tmp_obs_space self.current_obs = obs_tmp self._voltage_controler = volt_cont return res def get_kwargs(self, with_backend=True): """ This function allows to make another Environment with the same parameters as the one that have been used to make this one. This is useful especially in cases where Environment is not pickable (for example if some non pickable c++ code are used) but you still want to make parallel processing using "MultiProcessing" module. In that case, you can send this dictionary to each child process, and have each child process make a copy of ``self`` **NB** This function should not be used to make a copy of an environment. Prefer using :func:`Environment.copy` for such purpose. Returns ------- res: ``dict`` A dictionary that helps build an environment like ``self`` (which is NOT a copy of self) but rather an instance of an environment with the same properties. Examples -------- It should be used as follow: .. code-block:: python import grid2op from grid2op.Environment import Environment env = grid2op.make() # create the environment of your choice copy_of_env = Environment(**env.get_kwargs()) # And you can use this one as you would any other environment. # NB this is not a "proper" copy. for example it will not be at the same step, it will be possible # seeded with a different seed. # use `env.copy()` to make a proper copy of an environment. """ res = {} res["init_grid_path"] = self._init_grid_path res["chronics_handler"] = copy.deepcopy(self.chronics_handler) if with_backend: res["backend"] = self.backend.copy() res["parameters"] = copy.deepcopy(self.parameters) res["names_chronics_to_backend"] = copy.deepcopy(self.names_chronics_to_backend) res["actionClass"] = self._actionClass res["observationClass"] = self._observationClass res["rewardClass"] = self._rewardClass res["legalActClass"] = self._legalActClass res["epsilon_poly"] = self._epsilon_poly res["tol_poly"] = self._tol_poly res["thermal_limit_a"] = self._thermal_limit_a res["voltagecontrolerClass"] = self._voltagecontrolerClass res["other_rewards"] = {k: v.rewardClass for k, v in self.other_rewards.items()} res["name"] = self.name res["_raw_backend_class"] = self._raw_backend_class res["with_forecast"] = self.with_forecast res["opponent_action_class"] = self._opponent_action_class res["opponent_class"] = self._opponent_class res["opponent_init_budget"] = self._opponent_init_budget res["opponent_budget_per_ts"] = self._opponent_budget_per_ts res["opponent_budget_class"] = self._opponent_budget_class res["opponent_attack_duration"] = self._opponent_attack_duration res["opponent_attack_cooldown"] = self._opponent_attack_cooldown res["kwargs_opponent"] = self._kwargs_opponent return res def _chronics_folder_name(self): return "chronics" def train_val_split(self, val_scen_id, add_for_train="train", add_for_val="val"): """ This function is used as :func:`Environment.train_val_split_random`. Please refer to this the help of :func:`Environment.train_val_split_random` for more information about this function. Parameters ---------- val_scen_id: ``list`` List of the scenario names that will be placed in the validation set add_for_train: ``str`` See :func:`Environment.train_val_split_random` for more information add_for_val: ``str`` See :func:`Environment.train_val_split_random` for more information Returns ------- nm_train: ``str`` See :func:`Environment.train_val_split_random` for more information nm_val: ``str`` See :func:`Environment.train_val_split_random` for more information """ # define all the locations if re.match("^[a-zA-Z0-9]*$", add_for_train) is not None: raise EnvError("The suffixes you can use for training data (add_for_train) " "should match the regex \"^[a-zA-Z0-9]*$\"") if re.match("^[a-zA-Z0-9]*$", add_for_val) is not None: raise EnvError("The suffixes you can use for validation data (add_for_val)" "should match the regex \"^[a-zA-Z0-9]*$\"") my_path = self.get_path_env() path_train = os.path.split(my_path) nm_train = f'{path_train[1]}_{add_for_train}' path_train = os.path.join(path_train[0], nm_train) path_val = os.path.split(my_path) nm_val = f'{path_val[1]}_{add_for_val}' path_val = os.path.join(path_val[0], nm_val) chronics_dir = self._chronics_folder_name() # create the folder if os.path.exists(path_val): raise RuntimeError(f"Impossible to create the validation environment that should have the name " f"\"{nm_val}\" because an environment is already named this way. If you want to " f"continue either delete the folder \"{path_val}\" or name your validation environment " f"differently " f"using the \"add_for_val\" keyword argument of this function.") if os.path.exists(path_train): raise RuntimeError(f"Impossible to create the training environment that should have the name " f"\"{nm_train}\" because an environment is already named this way. If you want to " f"continue either delete the folder \"{path_train}\" or name your training environment " f" differently " f"using the \"add_for_train\" keyword argument of this function.") os.mkdir(path_val) os.mkdir(path_train) # assign which chronics goes where chronics_path = os.path.join(my_path, chronics_dir) all_chron = sorted(os.listdir(chronics_path)) to_val = set(val_scen_id) # copy the files for el in os.listdir(my_path): tmp_path = os.path.join(my_path, el) if os.path.isfile(tmp_path): # this is a regular env file os.symlink(tmp_path, os.path.join(path_train, el)) os.symlink(tmp_path, os.path.join(path_val, el)) elif os.path.isdir(tmp_path): if el == chronics_dir: # this is the chronics folder os.mkdir(os.path.join(path_train, chronics_dir)) os.mkdir(os.path.join(path_val, chronics_dir)) for chron_name in all_chron: tmp_path_chron = os.path.join(tmp_path, chron_name) if chron_name in to_val: os.symlink(tmp_path_chron, os.path.join(path_val, chronics_dir, chron_name)) else: os.symlink(tmp_path_chron, os.path.join(path_train, chronics_dir, chron_name)) return nm_train, nm_val def train_val_split_random(self, pct_val=10., add_for_train="train", add_for_val="val"): """ By default a grid2op environment contains multiple "scenarios" containing values for all the producers and consumers representing multiple days. In a "game like" environment, you can think of the scenarios as being different "game levels": different mazes in pacman, different levels in mario etc. We recommend to train your agent on some of these "chroncis" (aka levels) and test the performance of your agent on some others, to avoid overfitting. This function allows to easily split an environment into different part. This is most commonly used in machine learning where part of a dataset is used for training and another part is used for assessing the performance of the trained model. This function rely on "symbolic link" and will not duplicate data. New created environments will behave like regular grid2op environment and will be accessible with "make" just like any others (see the examples section for more information). This function will make the split at random. If you want more control on the which scenarios to use for training and which for validation, use the :func:`Environment.train_val_split` that allows to specify which scenarios goes in the validation environment (and the others go in the training environment). Parameters ---------- pct_val: ``float`` Percentage of chronics that will go to the validation set. For 10% of the chronics, set it to 10. and NOT to 0.1. add_for_train: ``str`` Suffix that will be added to the name of the environment for the training set. We don't recommend to modify the default value ("train") add_for_val: ``str`` Suffix that will be added to the name of the environment for the validation set. We don't recommend to modify the default value ("val") Returns ------- nm_train: ``str`` Complete name of the "training" environment nm_val: ``str`` Complete name of the "validation" environment Examples -------- This function can be used like: .. code-block:: python import grid2op env_name = "l2rpn_case14_sandbox" # or any other... env = grid2op.make(env_name) # extract 1% of the "chronics" to be used in the validation environment. The other 99% will # be used for test nm_env_train, nm_env_val = env.train_val_split_random(pct_val=1.) # and now you can use the training set only to train your agent: print(f"The name of the training environment is \\"{nm_env_train}\\"") print(f"The name of the validation environment is \\"{nm_env_val}\\"") env_train = grid2op.make(nm_env_train) And even after you close the python session, you can still use this environment for training. If you used the exact code above that will look like: .. code-block:: python import grid2op env_name_train = "l2rpn_case14_sandbox_train" # depending on the option you passed above env_train = grid2op.make(env_name_train) Notes ----- This function will fail if an environment already exists with one of the name that would be given to the training environment or the validation environment. """ if re.match("^[a-zA-Z0-9]*$", add_for_train) is not None: raise EnvError("The suffixes you can use for training data (add_for_train) " "should match the regex \"^[a-zA-Z0-9]*$\"") if re.match("^[a-zA-Z0-9]*$", add_for_val) is not None: raise EnvError("The suffixes you can use for validation data (add_for_val)" "should match the regex \"^[a-zA-Z0-9]*$\"") my_path = self.get_path_env() chronics_path = os.path.join(my_path, self._chronics_folder_name()) all_chron = sorted(os.listdir(chronics_path)) to_val = self.space_prng.choice(all_chron, int(len(all_chron) * pct_val * 0.01)) return self.train_val_split(to_val, add_for_train=add_for_train, add_for_val=add_for_val) def get_params_for_runner(self): """ This method is used to initialize a proper :class:`grid2op.Runner.Runner` to use this specific environment. Examples -------- It should be used as followed: .. code-block:: python import grid2op from grid2op.Runner import Runner from grid2op.Agent import DoNothingAgent # for example env = grid2op.make() # create the environment of your choice # create the proper runner runner = Runner(**env.get_params_for_runner(), agentClass=DoNothingAgent) # now you can run runner.run(nb_episode=1) # run for 1 episode """ res = {} res["init_grid_path"] = self._init_grid_path res["path_chron"] = self.chronics_handler.path res["parameters_path"] = self.parameters.to_dict() res["names_chronics_to_backend"] = self.names_chronics_to_backend res["actionClass"] = self._actionClass res["observationClass"] = self._observationClass res["rewardClass"] = self._rewardClass res["legalActClass"] = self._legalActClass res["envClass"] = Environment res["gridStateclass"] = self.chronics_handler.chronicsClass res["backendClass"] = self._raw_backend_class res["verbose"] = False dict_ = copy.deepcopy(self.chronics_handler.kwargs) if 'path' in dict_: # path is handled elsewhere del dict_["path"] if self.chronics_handler.max_iter is not None: res["max_iter"] = self.chronics_handler.max_iter res["gridStateclass_kwargs"] = dict_ res["thermal_limit_a"] = self._thermal_limit_a res["voltageControlerClass"] = self._voltagecontrolerClass res["other_rewards"] = {k: v.rewardClass for k, v in self.other_rewards.items()} res["grid_layout"] = self.grid_layout res["name_env"] = self.name res["opponent_action_class"] = self._opponent_action_class res["opponent_class"] = self._opponent_class res["opponent_init_budget"] = self._opponent_init_budget res["opponent_budget_per_ts"] = self._opponent_budget_per_ts res["opponent_budget_class"] = self._opponent_budget_class res["opponent_attack_duration"] = self._opponent_attack_duration res["opponent_attack_cooldown"] = self._opponent_attack_cooldown res["opponent_kwargs"] = self._kwargs_opponent return res
class Environment(_BasicEnv): """ Attributes ---------- logger: ``logger`` Use to store some information (currently in beta status) time_stamp: ``datetime.time`` Current time of the chronics nb_time_step: ``int`` Number of time steps played this episode parameters: :class:`grid2op.Parameters.Parameters` Parameters used for the game rewardClass: ``type`` Type of reward used. Should be a subclass of :class:`grid2op.BaseReward.BaseReward` init_grid_path: ``str`` The path where the description of the powergrid is located. backend: :class:`grid2op.Backend.Backend` The backend used to compute powerflows and cascading failures. game_rules: :class:`grid2op.GameRules.RulesChecker` The rules of the game (define which actions are legal and which are not) helper_action_player: :class:`grid2op.Action.ActionSpace` Helper used to manipulate more easily the actions given to / provided by the :class:`grid2op.BaseAgent` (player) helper_action_env: :class:`grid2op.Action.ActionSpace` Helper used to manipulate more easily the actions given to / provided by the environment to the backend. helper_observation: :class:`grid2op.Observation.ObservationSpace` Helper used to generate the observation that will be given to the :class:`grid2op.BaseAgent` current_obs: :class:`grid2op.Observation.Observation` The current observation (or None if it's not intialized) no_overflow_disconnection: ``bool`` Whether or not cascading failures are computed or not (TRUE = the powerlines above their thermal limits will not be disconnected). This is initialized based on the attribute :attr:`grid2op.Parameters.Parameters.NO_OVERFLOW_DISCONNECTION`. timestep_overflow: ``numpy.ndarray``, dtype: int Number of consecutive timesteps each powerline has been on overflow. nb_timestep_overflow_allowed: ``numpy.ndarray``, dtype: int Number of consecutive timestep each powerline can be on overflow. It is usually read from :attr:`grid2op.Parameters.Parameters.NB_TIMESTEP_POWERFLOW_ALLOWED`. hard_overflow_threshold: ``float`` Number of timestep before an :class:`grid2op.BaseAgent.BaseAgent` can reconnet a powerline that has been disconnected by the environment due to an overflow. env_dc: ``bool`` Whether the environment computes the powerflow using the DC approximation or not. It is usually read from :attr:`grid2op.Parameters.Parameters.ENV_DC`. chronics_handler: :class:`grid2op.ChronicsHandler.ChronicsHandler` Helper to get the modification of each time step during the episode. names_chronics_to_backend: ``dict`` Configuration file used to associated the name of the objects in the backend (both extremities of powerlines, load or production for example) with the same object in the data (:attr:`Environment.chronics_handler`). The idea is that, usually data generation comes from a different software that does not take into account the powergrid infrastructure. Hence, the same "object" can have a different name. This mapping is present to avoid the need to rename the "object" when providing data. A more detailed description is available at :func:`grid2op.ChronicsHandler.GridValue.initialize`. reward_helper: :class:`grid2p.BaseReward.RewardHelper` Helper that is called to compute the reward at each time step. action_space: :class:`grid2op.Action.ActionSpace` Another name for :attr:`Environment.helper_action_player` for gym compatibility. observation_space: :class:`grid2op.Observation.ObservationSpace` Another name for :attr:`Environment.helper_observation` for gym compatibility. reward_range: ``(float, float)`` The range of the reward function metadata: ``dict`` For gym compatibility, do not use spec: ``None`` For Gym compatibility, do not use viewer: ``object`` Used to display the powergrid. Currently not supported. env_modification: :class:`grid2op.Action.Action` Representation of the actions of the environment for the modification of the powergrid. current_reward: ``float`` The reward of the current time step TODO update with maintenance, hazards etc. see below # store actions "cooldown" times_before_line_status_actionable max_timestep_line_status_deactivated times_before_topology_actionable max_timestep_topology_deactivated time_next_maintenance duration_next_maintenance hard_overflow_threshold time_remaining_before_reconnection # redispacthing target_dispatch actual_dispatch gen_activeprod_t: Should be initialized at 0. for "step" to properly recognize it's the first time step of the game other_rewards: ``dict`` Dictionnary with key being the name (identifier) and value being some RewardHelper. At each time step, all the values will be computed by the :class:`Environment` and the information about it will be returned in the "reward" key of the "info" dictionnary of the :func:`Environment.step`. """ def __init__(self, init_grid_path: str, chronics_handler, backend, parameters, names_chronics_to_backend=None, actionClass=TopologyAction, observationClass=CompleteObservation, rewardClass=FlatReward, legalActClass=AlwaysLegal, voltagecontrolerClass=ControlVoltageFromFile, other_rewards={}, thermal_limit_a=None, epsilon_poly=1e-2, tol_poly=1e-6, opponent_action_class=DontAct, opponent_class=BaseOpponent, opponent_init_budget=0): """ Initialize the environment. See the descirption of :class:`grid2op.Environment.Environment` for more information. Parameters ---------- init_grid_path: ``str`` Used to initailize :attr:`Environment.init_grid_path` chronics_handler backend parameters names_chronics_to_backend actionClass observationClass rewardClass legalActClass """ # TODO documentation!! _BasicEnv.__init__(self, parameters=parameters, thermal_limit_a=thermal_limit_a, epsilon_poly=epsilon_poly, tol_poly=tol_poly, other_rewards=other_rewards) # the voltage controler self.voltagecontrolerClass = voltagecontrolerClass self.voltage_controler = None # for gym compatibility (initialized below) self.action_space = None self.observation_space = None self.reward_range = None self.viewer = None self.metadata = None self.spec = None # for opponent (should be defined here) after the initialization of _BasicEnv self.opponent_action_class = opponent_action_class self.opponent_class = opponent_class self.opponent_init_budget = opponent_init_budget # for plotting self.init_backend(init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass) def init_backend(self, init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass): if not isinstance(rewardClass, type): raise Grid2OpException( "Parameter \"rewardClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(rewardClass))) if not issubclass(rewardClass, BaseReward): raise Grid2OpException( "Parameter \"rewardClass\" used to build the Environment should derived form the grid2op.BaseReward class, " "type provided is \"{}\"".format(type(rewardClass))) self.rewardClass = rewardClass self.actionClass = actionClass self.observationClass = observationClass # backend self.init_grid_path = os.path.abspath(init_grid_path) if not isinstance(backend, Backend): raise Grid2OpException( "Parameter \"backend\" used to build the Environment should derived form the grid2op.Backend class, " "type provided is \"{}\"".format(type(backend))) self.backend = backend self.backend.load_grid( self.init_grid_path) # the real powergrid of the environment self.backend.load_redispacthing_data( os.path.split(self.init_grid_path)[0]) self.backend.load_grid_layout(os.path.split(self.init_grid_path)[0]) self.backend.assert_grid_correct() self.init_grid(backend) self._has_been_initialized( ) # really important to include this piece of code! if self._thermal_limit_a is None: self._thermal_limit_a = self.backend.thermal_limit_a else: self.backend.set_thermal_limit(self._thermal_limit_a) *_, tmp = self.backend.generators_info() # rules of the game if not isinstance(legalActClass, type): raise Grid2OpException( "Parameter \"legalActClass\" used to build the Environment should be a type " "(a class) and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(legalActClass, BaseRules): raise Grid2OpException( "Parameter \"legalActClass\" used to build the Environment should derived form the " "grid2op.BaseRules class, type provided is \"{}\"".format( type(legalActClass))) self.game_rules = RulesChecker(legalActClass=legalActClass) self.legalActClass = legalActClass # action helper if not isinstance(actionClass, type): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(actionClass, BaseAction): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should derived form the " "grid2op.BaseAction class, type provided is \"{}\"".format( type(actionClass))) if not isinstance(observationClass, type): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(observationClass, BaseObservation): raise Grid2OpException( "Parameter \"observationClass\" used to build the Environment should derived form the " "grid2op.BaseObservation class, type provided is \"{}\"". format(type(observationClass))) # action affecting the grid that will be made by the agent self.helper_action_player = ActionSpace( gridobj=self.backend, actionClass=actionClass, legal_action=self.game_rules.legal_action) # action that affect the grid made by the environment. self.helper_action_env = ActionSpace( gridobj=self.backend, actionClass=CompleteAction, legal_action=self.game_rules.legal_action) self.helper_observation = ObservationSpace( gridobj=self.backend, observationClass=observationClass, rewardClass=rewardClass, env=self) # handles input data if not isinstance(chronics_handler, ChronicsHandler): raise Grid2OpException( "Parameter \"chronics_handler\" used to build the Environment should derived form the " "grid2op.ChronicsHandler class, type provided is \"{}\"". format(type(chronics_handler))) self.chronics_handler = chronics_handler self.chronics_handler.initialize( self.name_load, self.name_gen, self.name_line, self.name_sub, names_chronics_to_backend=names_chronics_to_backend) self.names_chronics_to_backend = names_chronics_to_backend # test to make sure the backend is consistent with the chronics generator self.chronics_handler.check_validity(self.backend) # reward function self.reward_helper = RewardHelper(self.rewardClass) self.reward_helper.initialize(self) for k, v in self.other_rewards.items(): v.initialize(self) # controler for voltage if not issubclass(self.voltagecontrolerClass, BaseVoltageController): raise Grid2OpException( "Parameter \"voltagecontrolClass\" should derive from \"ControlVoltageFromFile\"." ) self.voltage_controler = self.voltagecontrolerClass( gridobj=self.backend, controler_backend=self.backend) # create the opponent # At least the 3 following attributes should be set before calling _create_opponent # self.opponent_action_class # self.opponent_class # self.opponent_init_budget self._create_opponent() # performs one step to load the environment properly (first action need to be taken at first time step after # first injections given) self._reset_maintenance() do_nothing = self.helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException( "Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) # test the backend returns object of the proper size self.backend.assert_grid_correct_after_powerflow() # for gym compatibility self.action_space = self.helper_action_player # this should be an action !!! self.observation_space = self.helper_observation # this return an observation. self.reward_range = self.reward_helper.range() self.viewer = None self.metadata = {'render.modes': ["human", "rgb_array"]} self.spec = None self.current_reward = self.reward_range[0] self.done = False # reset everything to be consistent self._reset_vectors_and_timings() def _voltage_control(self, agent_action, prod_v_chronics): """ Update the environment action "action_env" given a possibly new voltage setpoint for the generators. This function can be overide for a more complex handling of the voltages. It mush update (if needed) the voltages of the environment action :attr:`BasicEnv.env_modification` Parameters ---------- agent_action: :class:`grid2op.Action.Action` The action performed by the player (or do nothing is player action were not legal or ambiguous) prod_v_chronics: ``numpy.ndarray`` or ``None`` The voltages that has been specified in the chronics """ self.env_modification += self.voltage_controler.fix_voltage( self.current_obs, agent_action, self.env_modification, prod_v_chronics) def set_chunk_size(self, new_chunk_size): """ For an efficient data pipeline, it can be usefull to not read all part of the input data (for example for load_p, prod_p, load_q, prod_v). Grid2Op support the reading of large chronics by "chunk" of given size. Reading data in chunk can also reduce the memory footprint, useful in case of multiprocessing environment while large chronics. It is critical to set a small chunk_size in case of training machine learning algorithm (reinforcement learning agent) at the beginning when the agent performs poorly, the software might spend most of its time loading the data. **NB** this has no effect if the chronics does not support this feature. TODO see xxx for more information **NB** The environment need to be **reset** for this to take effect (it won't affect the chronics already loaded) Parameters ---------- new_chunk_size: ``int`` or ``None`` The new chunk size (positive integer) """ if new_chunk_size is None: self.chronics_handler.set_chunk_size(new_chunk_size) return try: new_chunk_size = int(new_chunk_size) except Exception as e: raise Grid2OpException( "Impossible to set the chunk size. It should be convertible a integer, and not" "{}".format(new_chunk_size)) if new_chunk_size <= 0: raise Grid2OpException( "Impossible to read less than 1 data at a time. Please make sure \"new_chunk_size\"" "is a positive integer.") self.chronics_handler.set_chunk_size(new_chunk_size) def set_id(self, id_): """ Set the id that will be used at the next call to :func:`Environment.reset`. **NB** this has no effect if the chronics does not support this feature. TODO see xxx for more information **NB** The environment need to be **reset** for this to take effect. Parameters ---------- id_: ``int`` the id of the chronics used. Examples -------- Here an example that will loop 10 times through the same chronics (always using the same injection then): .. code-block:: python import grid2op from grid2op import make from grid2op.BaseAgent import DoNothingAgent env = make("case14_redisp") # create an environment agent = DoNothingAgent(env.action_space) # create an BaseAgent for i in range(10): env.set_id(0) # tell the environment you simply want to use the chronics with ID 0 obs = env.reset() # it is necessary to perform a reset reward = env.reward_range[0] done = False while not done: act = agent.act(obs, reward, done) obs, reward, done, info = env.step(act) """ self.chronics_handler.tell_id(id_ - 1) def attach_renderer(self, graph_layout=None): if self.viewer is not None: return if graph_layout is not None: self.viewer = PlotPyGame(observation_space=self.helper_observation, substation_layout=graph_layout) self.viewer.reset(self) else: raise PlotError( "No layout are available for the powergrid. Renderer is not possible." ) def __str__(self): return '<{} instance>'.format(type(self).__name__) # TODO be closer to original gym implementation # if self.spec is None: # return '<{} instance>'.format(type(self).__name__) # else: # return '<{}<{}>>'.format(type(self).__name__, self.spec.id) def reset_grid(self): """ Reset the backend to a clean state by reloading the powergrid from the hard drive. This might takes some time. If the thermal has been modified, it also modify them into the new backend. """ self.backend.load_grid( self.init_grid_path) # the real powergrid of the environment self.backend.assert_grid_correct() if self._thermal_limit_a is not None: self.backend.set_thermal_limit(self._thermal_limit_a) # TODO this is super weird!!!! # self.gen_downtime = self.gen_min_downtime + 1 # self.gen_uptime = self.gen_min_uptime + 1 do_nothing = self.helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException( "Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) # test the backend returns object of the proper size self.backend.assert_grid_correct_after_powerflow() def add_text_logger(self, logger=None): """ Add a text logger to this :class:`Environment` Logging is for now an incomplete feature. It will get improved Parameters ---------- logger: The logger to use """ self.logger = logger return self def seed(self, seed=None): """ Set the seed of this :class:`Environment` for a better control and to ease reproducible experiments. This is not supported yet. Parameters ---------- seed: ``int`` The seed to set. """ try: seed = np.array(seed).astype('int64') except Exception as e: raise Grid2OpException( "Impossible to seed with the seed provided. Make sure it can be converted to a" "numpy 64 integer.") # example from gym # self.np_random, seed = seeding.np_random(seed) # TODO make that more clean, see example of seeding @ https://github.com/openai/gym/tree/master/gym/utils self.chronics_handler.seed(seed) self.helper_observation.seed(seed) self.helper_action_player.seed(seed) self.helper_action_env.seed(seed) return [seed] def reset(self): """ Reset the environment to a clean state. It will reload the next chronics if any. And reset the grid to a clean state. This triggers a full reloading of both the chronics (if they are stored as files) and of the powergrid, to ensure the episode is fully over. This method should be called only at the end of an episode. """ self.chronics_handler.next_chronics() self.chronics_handler.initialize( self.backend.name_load, self.backend.name_gen, self.backend.name_line, self.backend.name_sub, names_chronics_to_backend=self.names_chronics_to_backend) self.current_obs = None self.env_modification = None self._reset_maintenance() self._reset_redispatching() self._reset_vectors_and_timings( ) # it need to be done BEFORE to prevent cascading failure when there has been self.reset_grid() if self.viewer is not None: self.viewer.reset(self) # if True, then it will not disconnect lines above their thermal limits self._reset_vectors_and_timings( ) # and it needs to be done AFTER to have proper timings at tbe beginning # TODO add test above: fake a cascading failure, do a reset, check that it can be loaded # reset the opponent self.oppSpace.reset() return self.get_obs() def render(self, mode='human'): err_msg = "Impossible to use the renderer, please set it up with \"env.init_renderer(graph_layout)\", " \ "graph_layout being the position of each substation of the powergrid that you must provide" self.attach_renderer() if mode == "human": if self.viewer is not None: has_quit = self.viewer.render(self.current_obs, reward=self.current_reward, timestamp=self.time_stamp, done=self.done) if has_quit: self.close() exit() else: raise Grid2OpException(err_msg) elif mode == "rgb_array": if self.viewer is not None: return np.array( self.viewer.get_rgb(self.current_obs, reward=self.current_reward, timestamp=self.time_stamp, done=self.done)) else: raise Grid2OpException(err_msg) else: raise Grid2OpException( "Renderer mode \"{}\" not supported.".format(mode)) def copy(self): """ performs a deep copy of the environment Returns ------- """ tmp_backend = self.backend self.backend = None res = copy.deepcopy(self) res.backend = tmp_backend.copy() if self._thermal_limit_a is not None: res.backend.set_thermal_limit(self._thermal_limit_a) self.backend = tmp_backend return res def get_kwargs(self): """ This function allows to make another Environment with the same parameters as the one that have been used to make this one. This is usefull especially in cases where Environment is not pickable (for example if some non pickable c++ code are used) but you still want to make parallel processing using "MultiProcessing" module. In that case, you can send this dictionnary to each child process, and have each child process make a copy of ``self`` Returns ------- res: ``dict`` A dictionnary that helps build an environment like ``self`` Examples -------- It should be used as follow: .. code-block:: python import grid2op from grid2op.Environment import Environment env = grid2op.make() # create the environment of your choice copy_of_env = Environment(**env.get_kwargs()) # And you can use this one as you would any other environment. """ res = {} res["init_grid_path"] = self.init_grid_path res["chronics_handler"] = copy.deepcopy(self.chronics_handler) res["parameters"] = copy.deepcopy(self.parameters) res["names_chronics_to_backend"] = copy.deepcopy( self.names_chronics_to_backend) res["actionClass"] = self.actionClass res["observationClass"] = self.observationClass res["rewardClass"] = self.rewardClass res["legalActClass"] = self.legalActClass res["epsilon_poly"] = self._epsilon_poly res["tol_poly"] = self._tol_poly res["thermal_limit_a"] = self._thermal_limit_a res["voltagecontrolerClass"] = self.voltagecontrolerClass res["other_rewards"] = { k: v.rewardClass for k, v in self.other_rewards.items() } res["opponent_action_class"] = self.opponent_action_class res["opponent_class"] = self.opponent_class res["opponent_init_budget"] = self.opponent_init_budget return res def get_params_for_runner(self): """ This method is used to initialize a proper :class:`grid2op.Runner.Runner` to use this specific environment. Examples -------- It should be used as followed: .. code-block:: python import grid2op from grid2op.Runner import Runner env = grid2op.make() # create the environment of your choice agent = DoNothingAgent(env.actoin_space) # create the proper runner runner = Runner(**env.get_params_for_runner(), agentClass=DoNothingAgent) # now you can run runner.run(nb_episode=1) # run for 1 episode """ res = {} res["init_grid_path"] = self.init_grid_path res["path_chron"] = self.chronics_handler.path res["parameters_path"] = self.parameters.to_dict() res["names_chronics_to_backend"] = self.names_chronics_to_backend res["actionClass"] = self.actionClass res["observationClass"] = self.observationClass res["rewardClass"] = self.rewardClass res["legalActClass"] = self.legalActClass res["envClass"] = Environment res["gridStateclass"] = self.chronics_handler.chronicsClass res["backendClass"] = type(self.backend) # TODO res["verbose"] = False dict_ = copy.deepcopy(self.chronics_handler.kwargs) if 'path' in dict_: # path is handled elsewhere del dict_["path"] res["gridStateclass_kwargs"] = dict_ res["thermal_limit_a"] = self._thermal_limit_a res["voltageControlerClass"] = self.voltagecontrolerClass res["other_rewards"] = { k: v.rewardClass for k, v in self.other_rewards.items() } res["opponent_action_class"] = self.opponent_action_class res["opponent_class"] = self.opponent_class res["opponent_init_budget"] = self.opponent_init_budget res["grid_layout"] = self.grid_layout # TODO make a test for that return res
class Environment(BaseEnv): """ This class is the grid2op implementation of the "Environment" entity in the RL framework. TODO clean the attribute, make a doc for all of them, move the description of some of them in BaseEnv when relevant. Attributes ---------- logger: ``logger`` Use to store some information (currently in beta status) time_stamp: ``datetime.time`` Current time of the chronics nb_time_step: ``int`` Number of time steps played this episode parameters: :class:`grid2op.Parameters.Parameters` Parameters used for the game rewardClass: ``type`` Type of reward used. Should be a subclass of :class:`grid2op.BaseReward.BaseReward` init_grid_path: ``str`` The path where the description of the powergrid is located. backend: :class:`grid2op.Backend.Backend` The backend used to compute powerflows and cascading failures. game_rules: :class:`grid2op.Rules.RulesChecker` The rules of the game (define which actions are legal and which are not) helper_action_player: :class:`grid2op.Action.ActionSpace` Helper used to manipulate more easily the actions given to / provided by the :class:`grid2op.Agent.BaseAgent` (player) helper_action_env: :class:`grid2op.Action.ActionSpace` Helper used to manipulate more easily the actions given to / provided by the environment to the backend. helper_observation: :class:`grid2op.Observation.ObservationSpace` Helper used to generate the observation that will be given to the :class:`grid2op.BaseAgent` current_obs: :class:`grid2op.Observation.Observation` The current observation (or None if it's not intialized) chronics_handler: :class:`grid2op.ChronicsHandler.ChronicsHandler` Helper to get the modification of each time step during the episode. names_chronics_to_backend: ``dict`` Configuration file used to associated the name of the objects in the backend (both extremities of powerlines, load or production for example) with the same object in the data (:attr:`Environment.chronics_handler`). The idea is that, usually data generation comes from a different software that does not take into account the powergrid infrastructure. Hence, the same "object" can have a different name. This mapping is present to avoid the need to rename the "object" when providing data. A more detailed description is available at :func:`grid2op.ChronicsHandler.GridValue.initialize`. reward_helper: :class:`grid2p.BaseReward.RewardHelper` Helper that is called to compute the reward at each time step. action_space: :class:`grid2op.Action.ActionSpace` Another name for :attr:`Environment.helper_action_player` for gym compatibility. observation_space: :class:`grid2op.Observation.ObservationSpace` Another name for :attr:`Environment.helper_observation` for gym compatibility. reward_range: ``(float, float)`` The range of the reward function metadata: ``dict`` For gym compatibility, do not use spec: ``None`` For Gym compatibility, do not use viewer: ``object`` Used to display the powergrid. Currently not supported. env_modification: :class:`grid2op.Action.Action` Representation of the actions of the environment for the modification of the powergrid. current_reward: ``float`` The reward of the current time step """ def __init__(self, init_grid_path: str, chronics_handler, backend, parameters, name="unknown", names_chronics_to_backend=None, actionClass=TopologyAction, observationClass=CompleteObservation, rewardClass=FlatReward, legalActClass=AlwaysLegal, voltagecontrolerClass=ControlVoltageFromFile, other_rewards={}, thermal_limit_a=None, with_forecast=True, epsilon_poly=1e-2, tol_poly=1e-6, opponent_action_class=DontAct, opponent_class=BaseOpponent, opponent_init_budget=0., opponent_budget_per_ts=0., opponent_budget_class=NeverAttackBudget, opponent_attack_duration=0, opponent_attack_cooldown=99999, kwargs_opponent={}, _raw_backend_class=None): BaseEnv.__init__(self, parameters=parameters, thermal_limit_a=thermal_limit_a, epsilon_poly=epsilon_poly, tol_poly=tol_poly, other_rewards=other_rewards, with_forecast=with_forecast, opponent_action_class=opponent_action_class, opponent_class=opponent_class, opponent_budget_class=opponent_budget_class, opponent_init_budget=opponent_init_budget, opponent_budget_per_ts=opponent_budget_per_ts, opponent_attack_duration=opponent_attack_duration, opponent_attack_cooldown=opponent_attack_cooldown, kwargs_opponent=kwargs_opponent) if name == "unknown": warnings.warn( "It is NOT recommended to create an environment without \"make\" and EVEN LESS " "to use an environment without a name") self.name = name # the voltage controler self.voltagecontrolerClass = voltagecontrolerClass self.voltage_controler = None # for gym compatibility (initialized below) self.action_space = None self.observation_space = None self.reward_range = None self.viewer = None self.metadata = None self.spec = None if _raw_backend_class is None: self._raw_backend_class = type(backend) else: self._raw_backend_class = _raw_backend_class # for plotting self.init_backend(init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass) def init_backend(self, init_grid_path, chronics_handler, backend, names_chronics_to_backend, actionClass, observationClass, rewardClass, legalActClass): """ TODO documentation Parameters ---------- init_grid_path chronics_handler backend names_chronics_to_backend actionClass observationClass rewardClass legalActClass Returns ------- """ if not isinstance(rewardClass, type): raise Grid2OpException( "Parameter \"rewardClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(rewardClass))) if not issubclass(rewardClass, BaseReward): raise Grid2OpException( "Parameter \"rewardClass\" used to build the Environment should derived form " "the grid2op.BaseReward class, type provided is \"{}\"".format( type(rewardClass))) self.rewardClass = rewardClass self.actionClass = actionClass self.observationClass = observationClass # backend self.init_grid_path = os.path.abspath(init_grid_path) if not isinstance(backend, Backend): raise Grid2OpException( "Parameter \"backend\" used to build the Environment should derived form the " "grid2op.Backend class, type provided is \"{}\"".format( type(backend))) self.backend = backend self.backend.load_grid( self.init_grid_path) # the real powergrid of the environment self.backend.load_redispacthing_data( os.path.split(self.init_grid_path)[0]) self.backend.load_grid_layout(os.path.split(self.init_grid_path)[0]) self.backend.set_env_name(self.name) self.backend.assert_grid_correct() self._has_been_initialized( ) # really important to include this piece of code! if self._thermal_limit_a is None: self._thermal_limit_a = self.backend.thermal_limit_a.astype( dt_float) else: self.backend.set_thermal_limit( self._thermal_limit_a.astype(dt_float)) *_, tmp = self.backend.generators_info() # rules of the game if not isinstance(legalActClass, type): raise Grid2OpException( "Parameter \"legalActClass\" used to build the Environment should be a type " "(a class) and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(legalActClass, BaseRules): raise Grid2OpException( "Parameter \"legalActClass\" used to build the Environment should derived form the " "grid2op.BaseRules class, type provided is \"{}\"".format( type(legalActClass))) self.game_rules = RulesChecker(legalActClass=legalActClass) self.legalActClass = legalActClass # action helper if not isinstance(actionClass, type): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(actionClass, BaseAction): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should derived form the " "grid2op.BaseAction class, type provided is \"{}\"".format( type(actionClass))) if not isinstance(observationClass, type): raise Grid2OpException( "Parameter \"actionClass\" used to build the Environment should be a type (a class) " "and not an object (an instance of a class). " "It is currently \"{}\"".format(type(legalActClass))) if not issubclass(observationClass, BaseObservation): raise Grid2OpException( "Parameter \"observationClass\" used to build the Environment should derived form the " "grid2op.BaseObservation class, type provided is \"{}\"". format(type(observationClass))) # action affecting the grid that will be made by the agent self.helper_action_class = ActionSpace.init_grid(gridobj=self.backend) self.helper_action_player = self.helper_action_class( gridobj=self.backend, actionClass=actionClass, legal_action=self.game_rules.legal_action) # action that affect the grid made by the environment. self.helper_action_env = self.helper_action_class( gridobj=self.backend, actionClass=CompleteAction, legal_action=self.game_rules.legal_action) self.helper_observation_class = ObservationSpace.init_grid( gridobj=self.backend) self.helper_observation = self.helper_observation_class( gridobj=self.backend, observationClass=observationClass, rewardClass=rewardClass, env=self) # handles input data if not isinstance(chronics_handler, ChronicsHandler): raise Grid2OpException( "Parameter \"chronics_handler\" used to build the Environment should derived form the " "grid2op.ChronicsHandler class, type provided is \"{}\"". format(type(chronics_handler))) self.chronics_handler = chronics_handler self.chronics_handler.initialize( self.name_load, self.name_gen, self.name_line, self.name_sub, names_chronics_to_backend=names_chronics_to_backend) self.names_chronics_to_backend = names_chronics_to_backend # test to make sure the backend is consistent with the chronics generator self.chronics_handler.check_validity(self.backend) # reward function self.reward_helper = RewardHelper(self.rewardClass) self.reward_helper.initialize(self) for k, v in self.other_rewards.items(): v.initialize(self) # controler for voltage if not issubclass(self.voltagecontrolerClass, BaseVoltageController): raise Grid2OpException( "Parameter \"voltagecontrolClass\" should derive from \"ControlVoltageFromFile\"." ) self.voltage_controler = self.voltagecontrolerClass( gridobj=self.backend, controler_backend=self.backend) # create the opponent # At least the 3 following attributes should be set before calling _create_opponent self._create_opponent() # performs one step to load the environment properly (first action need to be taken at first time step after # first injections given) self._reset_maintenance() self._reset_redispatching() do_nothing = self.helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException( "Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) # test the backend returns object of the proper size self.backend.assert_grid_correct_after_powerflow() # for gym compatibility self.action_space = self.helper_action_player # this should be an action !!! self.observation_space = self.helper_observation # this return an observation. self.reward_range = self.reward_helper.range() self.viewer = None self.viewer_fig = None self.metadata = {'render.modes': []} self.spec = None self.current_reward = self.reward_range[0] self.done = False # reset everything to be consistent self._reset_vectors_and_timings() def _voltage_control(self, agent_action, prod_v_chronics): """ Update the environment action "action_env" given a possibly new voltage setpoint for the generators. This function can be overide for a more complex handling of the voltages. It must update (if needed) the voltages of the environment action :attr:`BaseEnv.env_modification` Parameters ---------- agent_action: :class:`grid2op.Action.Action` The action performed by the player (or do nothing is player action were not legal or ambiguous) prod_v_chronics: ``numpy.ndarray`` or ``None`` The voltages that has been specified in the chronics """ volt_control_act = self.voltage_controler.fix_voltage( self.current_obs, agent_action, self.env_modification, prod_v_chronics) return volt_control_act def set_chunk_size(self, new_chunk_size): """ For an efficient data pipeline, it can be usefull to not read all part of the input data (for example for load_p, prod_p, load_q, prod_v). Grid2Op support the reading of large chronics by "chunk" of given size. Reading data in chunk can also reduce the memory footprint, useful in case of multiprocessing environment while large chronics. It is critical to set a small chunk_size in case of training machine learning algorithm (reinforcement learning agent) at the beginning when the agent performs poorly, the software might spend most of its time loading the data. **NB** this has no effect if the chronics does not support this feature. TODO see xxx for more information **NB** The environment need to be **reset** for this to take effect (it won't affect the chronics already loaded) Parameters ---------- new_chunk_size: ``int`` or ``None`` The new chunk size (positive integer) """ if new_chunk_size is None: self.chronics_handler.set_chunk_size(new_chunk_size) return try: new_chunk_size = int(new_chunk_size) except Exception as e: raise Grid2OpException( "Impossible to set the chunk size. It should be convertible a integer, and not" "{}".format(new_chunk_size)) if new_chunk_size <= 0: raise Grid2OpException( "Impossible to read less than 1 data at a time. Please make sure \"new_chunk_size\"" "is a positive integer.") self.chronics_handler.set_chunk_size(new_chunk_size) def set_id(self, id_): """ Set the id that will be used at the next call to :func:`Environment.reset`. **NB** this has no effect if the chronics does not support this feature. TODO see xxx for more information **NB** The environment need to be **reset** for this to take effect. Parameters ---------- id_: ``int`` the id of the chronics used. Examples -------- Here an example that will loop 10 times through the same chronics (always using the same injection then): .. code-block:: python import grid2op from grid2op import make from grid2op.BaseAgent import DoNothingAgent env = make("rte_case14_realistic") # create an environment agent = DoNothingAgent(env.action_space) # create an BaseAgent for i in range(10): env.set_id(0) # tell the environment you simply want to use the chronics with ID 0 obs = env.reset() # it is necessary to perform a reset reward = env.reward_range[0] done = False while not done: act = agent.act(obs, reward, done) obs, reward, done, info = env.step(act) And here you have an example on how you can loop through the scenarios in a given order: .. code-block:: python import grid2op from grid2op import make from grid2op.BaseAgent import DoNothingAgent env = make("rte_case14_realistic") # create an environment agent = DoNothingAgent(env.action_space) # create an BaseAgent scenario_order = [1,2,3,4,5,10,8,6,5,7,78, 8] for id_ in scenario_order: env.set_id(id_) # tell the environment you simply want to use the chronics with ID 0 obs = env.reset() # it is necessary to perform a reset reward = env.reward_range[0] done = False while not done: act = agent.act(obs, reward, done) obs, reward, done, info = env.step(act) """ try: id_ = int(id_) except: raise EnvError( "the \"id_\" parameters should be convertible to integer and not be of type {}" "".format(type(id_))) self.chronics_handler.tell_id(id_ - 1) def attach_renderer(self, graph_layout=None): """ This function will attach a renderer, necessary to use for plotting capabilities. Parameters ---------- graph_layout: ``dict`` If ``None`` this class will use the default substations layout provided when the environment was created. Otherwise it will use the data provided. """ # Viewer already exists: skip if self.viewer is not None: return # Do we have the dependency try: from grid2op.PlotGrid import PlotMatplot except ImportError: err_msg = "Cannot attach renderer: missing dependency\n" \ "Please install matplotlib or run pip install grid2op[optional]" raise Grid2OpException(err_msg) from None self.viewer = PlotMatplot(self.helper_observation) self.viewer_fig = None # Set renderer modes self.metadata = {'render.modes': ["human", "silent"]} def __str__(self): return '<{} instance>'.format(type(self).__name__) # TODO be closer to original gym implementation def reset_grid(self): """ Reset the backend to a clean state by reloading the powergrid from the hard drive. This might takes some time. If the thermal has been modified, it also modify them into the new backend. """ self.backend.reset( self.init_grid_path) # the real powergrid of the environment self.backend.assert_grid_correct() if self._thermal_limit_a is not None: self.backend.set_thermal_limit( self._thermal_limit_a.astype(dt_float)) self._backend_action = self._backend_action_class() do_nothing = self.helper_action_env({}) *_, fail_to_start, info = self.step(do_nothing) if fail_to_start: raise Grid2OpException( "Impossible to initialize the powergrid, the powerflow diverge at iteration 0. " "Available information are: {}".format(info)) def add_text_logger(self, logger=None): """ Add a text logger to this :class:`Environment` Logging is for now an incomplete feature, really incomplete (beta) Parameters ---------- logger: The logger to use """ self.logger = logger return self def reset(self): """ Reset the environment to a clean state. It will reload the next chronics if any. And reset the grid to a clean state. This triggers a full reloading of both the chronics (if they are stored as files) and of the powergrid, to ensure the episode is fully over. This method should be called only at the end of an episode. """ super().reset() self.chronics_handler.next_chronics() self.chronics_handler.initialize( self.backend.name_load, self.backend.name_gen, self.backend.name_line, self.backend.name_sub, names_chronics_to_backend=self.names_chronics_to_backend) self.current_obs = None self.env_modification = None self._reset_maintenance() self._reset_redispatching() self._reset_vectors_and_timings( ) # it need to be done BEFORE to prevent cascading failure when there has been self.reset_grid() if self.viewer_fig is not None: del self.viewer_fig self.viewer_fig = None # if True, then it will not disconnect lines above their thermal limits self._reset_vectors_and_timings( ) # and it needs to be done AFTER to have proper timings at tbe beginning # reset the opponent self.oppSpace.reset() return self.get_obs() def render(self, mode='human'): """ Render the state of the environment on the screen, using matplotlib Also returns the Matplotlib figure """ # Try to create a plotter instance # Does nothing if viewer exists # Raises if matplot is not installed self.attach_renderer() # Check mode is correct if mode not in self.metadata["render.modes"]: err_msg = "Renderer mode \"{}\" not supported. Available modes are {}." raise Grid2OpException( err_msg.format(mode, self.metadata["render.modes"])) # Render the current observation fig = self.viewer.plot_obs(self.current_obs, figure=self.viewer_fig, redraw=True) # First time show for human mode if self.viewer_fig is None and mode == "human": fig.show() else: # Update the figure content fig.canvas.draw() # Store to re-use the figure self.viewer_fig = fig # Return the figure in case it needs to be saved/used return self.viewer_fig def copy(self): """ performs a deep copy of the environment Returns ------- """ tmp_backend = self.backend self.backend = None res = copy.deepcopy(self) res.backend = tmp_backend.copy() if self._thermal_limit_a is not None: res.backend.set_thermal_limit(self._thermal_limit_a) self.backend = tmp_backend return res def get_kwargs(self, with_backend=True): """ This function allows to make another Environment with the same parameters as the one that have been used to make this one. This is useful especially in cases where Environment is not pickable (for example if some non pickable c++ code are used) but you still want to make parallel processing using "MultiProcessing" module. In that case, you can send this dictionary to each child process, and have each child process make a copy of ``self`` Returns ------- res: ``dict`` A dictionary that helps build an environment like ``self`` Examples -------- It should be used as follow: .. code-block:: python import grid2op from grid2op.Environment import Environment env = grid2op.make() # create the environment of your choice copy_of_env = Environment(**env.get_kwargs()) # And you can use this one as you would any other environment. """ res = {} res["init_grid_path"] = self.init_grid_path res["chronics_handler"] = copy.deepcopy(self.chronics_handler) if with_backend: res["backend"] = self.backend.copy() res["parameters"] = copy.deepcopy(self.parameters) res["names_chronics_to_backend"] = copy.deepcopy( self.names_chronics_to_backend) res["actionClass"] = self.actionClass res["observationClass"] = self.observationClass res["rewardClass"] = self.rewardClass res["legalActClass"] = self.legalActClass res["epsilon_poly"] = self._epsilon_poly res["tol_poly"] = self._tol_poly res["thermal_limit_a"] = self._thermal_limit_a res["voltagecontrolerClass"] = self.voltagecontrolerClass res["other_rewards"] = { k: v.rewardClass for k, v in self.other_rewards.items() } res["name"] = self.name res["_raw_backend_class"] = self._raw_backend_class res["with_forecast"] = self.with_forecast res["opponent_action_class"] = self.opponent_action_class res["opponent_class"] = self.opponent_class res["opponent_init_budget"] = self.opponent_init_budget res["opponent_budget_per_ts"] = self.opponent_budget_per_ts res["opponent_budget_class"] = self.opponent_budget_class res["opponent_attack_duration"] = self.opponent_attack_duration res["opponent_attack_cooldown"] = self.opponent_attack_cooldown res["kwargs_opponent"] = self.kwargs_opponent return res def get_params_for_runner(self): """ This method is used to initialize a proper :class:`grid2op.Runner.Runner` to use this specific environment. Examples -------- It should be used as followed: .. code-block:: python import grid2op from grid2op.Runner import Runner env = grid2op.make() # create the environment of your choice agent = DoNothingAgent(env.actoin_space) # create the proper runner runner = Runner(**env.get_params_for_runner(), agentClass=DoNothingAgent) # now you can run runner.run(nb_episode=1) # run for 1 episode """ res = {} res["init_grid_path"] = self.init_grid_path res["path_chron"] = self.chronics_handler.path res["parameters_path"] = self.parameters.to_dict() res["names_chronics_to_backend"] = self.names_chronics_to_backend res["actionClass"] = self.actionClass res["observationClass"] = self.observationClass res["rewardClass"] = self.rewardClass res["legalActClass"] = self.legalActClass res["envClass"] = Environment res["gridStateclass"] = self.chronics_handler.chronicsClass res["backendClass"] = self._raw_backend_class res["verbose"] = False dict_ = copy.deepcopy(self.chronics_handler.kwargs) if 'path' in dict_: # path is handled elsewhere del dict_["path"] res["gridStateclass_kwargs"] = dict_ res["thermal_limit_a"] = self._thermal_limit_a res["voltageControlerClass"] = self.voltagecontrolerClass res["other_rewards"] = { k: v.rewardClass for k, v in self.other_rewards.items() } res["grid_layout"] = self.grid_layout res["name_env"] = self.name res["opponent_action_class"] = self.opponent_action_class res["opponent_class"] = self.opponent_class res["opponent_init_budget"] = self.opponent_init_budget res["opponent_budget_per_ts"] = self.opponent_budget_per_ts res["opponent_budget_class"] = self.opponent_budget_class res["opponent_attack_duration"] = self.opponent_attack_duration res["opponent_attack_cooldown"] = self.opponent_attack_cooldown res["opponent_kwargs"] = self.kwargs_opponent return res