def simplegrid(): nzones = 7 gr = gpu.grid(nzones, xmin=0, xmax=1) gpu.drawGrid(gr, edgeTicks=0) # label a few cell-centers gpu.labelCenter(gr, nzones/2, r"$i$") gpu.labelCenter(gr, nzones/2-1, r"$i-1$") gpu.labelCenter(gr, nzones/2+1, r"$i+1$") # label a few edges gpu.labelEdge(gr, nzones/2, r"$i-1/2$") gpu.labelEdge(gr, nzones/2+1, r"$i+1/2$") # draw an average quantity gpu.drawCellAvg(gr, nzones/2, 0.4, color="r") gpu.labelCellAvg(gr, nzones/2, 0.4, r"$\,\langle a \rangle_i$", color="r") pylab.axis([gr.xmin-1.5*gr.dx,gr.xmax+1.5*gr.dx, -0.25, 1.5]) pylab.axis("off") pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(10.0,2.5) pylab.savefig("simplegrid2.png") pylab.savefig("simplegrid2.eps")
gr = gpu.grid(nzones) pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, nzones / 2, r"$i$") gpu.labelCenter(gr, nzones / 2 - 1, r"$i-1$") gpu.labelCenter(gr, nzones / 2 + 1, r"$i+1$") gpu.labelCenter(gr, nzones / 2 - 2, r"$i-2$") gpu.labelCenter(gr, nzones / 2 + 2, r"$i+2$") n = 0 while (n < nzones): gpu.drawCellAvg(gr, n, a[n], color="r") n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -0.25, 1.2]) pylab.axis("off") pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) f = pylab.gcf() f.set_size_inches(8.0, 2.0) pylab.savefig("piecewise-constant.eps") pylab.savefig("piecewise-constant.png") #------------- PLM ------------- pylab.clf()
def riemann(): # grid info xmin = 0.0 xmax = 1.0 nzones = 4 ng = 2 gr = gpu.grid(nzones, ng=ng) # interior atemp = numpy.array([0.8, 0.7, 0.4, 0.5]) a = numpy.zeros(2 * gr.ng + gr.nx, dtype=numpy.float64) # fill interior and ghost cells a[gr.ilo:gr.ihi + 1] = atemp[:] a[0:gr.ilo] = a[gr.ihi - 1:gr.ihi + 1] a[gr.ihi:2 * gr.ng + gr.nx] = a[gr.ihi] #------------------------------------------------------------------------ # plot a domain without ghostcells gpu.drawGrid(gr, emphasizeEnd=1, drawGhost=1) gpu.labelCenter(gr, gr.ng - 2, r"$\mathrm{lo-2}$") gpu.labelCenter(gr, gr.ng - 1, r"$\mathrm{lo-1}$") gpu.labelCenter(gr, gr.ng, r"$\mathrm{lo}$") gpu.labelCenter(gr, gr.ng + 1, r"$\mathrm{lo+1}$") gpu.labelEdge(gr, gr.ng, r"$\mathrm{lo}-1/2$") # draw cell averages n = 0 while n < gr.ng + gr.nx: gpu.drawCellAvg(gr, n, a[n], color="0.5", ls=":") n += 1 # get slopes lda = gpu.lslopes(a, nolimit=1) n = gr.ilo - 1 while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="r") n += 1 # compute the states to the left and right of lo-1/2 C = 0.7 # CFL al = a[gr.ilo - 1] + 0.5 * gr.dx * (1.0 - C) * lda[gr.ilo - 1] ar = a[gr.ilo] - 0.5 * gr.dx * (1.0 + C) * lda[gr.ilo] # L gpu.markCellRightState(gr, ng - 1, r"$a_{\mathrm{lo}+1/2,L}^{n+1/2}$", value=al, vertical="top", color="b") # R gpu.markCellLeftState(gr, ng, r"$a_{\mathrm{lo}+1/2,R}^{n+1/2}$", value=ar, vertical="top", color="b") pylab.xlim(gr.xl[0] - 0.15 * gr.dx, gr.xr[ng + 1] + 0.15 * gr.dx) pylab.ylim(-0.25, 1.1) pylab.axis("off") pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) f = pylab.gcf() f.set_size_inches(8.0, 2.0) pylab.tight_layout() pylab.savefig("riemann-bc.png") pylab.savefig("riemann-bc.eps")
pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones/2, r"$i$") gpu.labelCenter(gr, gr.ng + nzones/2-1, r"$i-1$") gpu.labelCenter(gr, gr.ng + nzones/2+1, r"$i+1$") gpu.labelCenter(gr, gr.ng + nzones/2-2, r"$i-2$") gpu.labelCenter(gr, gr.ng + nzones/2+2, r"$i+2$") # draw cell averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, a[n], color="r") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") print gr.xmin-0.5*gr.dx, gr.xmax+0.5*gr.dx pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) pylab.savefig("rea-start.eps") pylab.savefig("rea-start.png")
gpu.drawGrid(gr) gpu.labelCenter(gr, nzones/2, r"$x_i$") gpu.labelAvg(gr, nzones/2, a[nzones/2], r"$\langle f\rangle_i$") gpu.labelCenter(gr, nzones/2-1, r"$x_{i-1}$") gpu.labelCenter(gr, nzones/2+1, r"$x_{i+1}$") gpu.labelCenter(gr, nzones/2-2, r"$x_{i-2}$") gpu.labelCenter(gr, nzones/2+2, r"$x_{i+2}$") gpu.labelEdge(gr, nzones/2, r"$x_{i-1/2}$") gpu.labelEdge(gr, nzones/2+1, r"$x_{i+1/2}$") n = 0 while (n < nzones): gpu.drawCellAvg(gr, n, a[n]) n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) pylab.savefig("fv.png", dpi=200) pylab.savefig("fv.eps")
pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, nzones/2, r"$i$") gpu.labelCenter(gr, nzones/2-1, r"$i-1$") gpu.labelCenter(gr, nzones/2+1, r"$i+1$") gpu.labelCenter(gr, nzones/2-2, r"$i-2$") gpu.labelCenter(gr, nzones/2+2, r"$i+2$") n = 0 while (n < nzones): gpu.drawCellAvg(gr, n, a[n], color="r") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) pylab.savefig("piecewise-constant.eps") pylab.savefig("piecewise-constant.png")
gpu.labelCenter(gr, gr.ilo, r"$\mathrm{lo}$") gpu.labelCenter(gr, gr.ilo-1, r"$\mathrm{lo-1}$") gpu.labelCenter(gr, gr.ilo-2, r"$\mathrm{lo-2}$") gpu.labelCenter(gr, gr.ihi, r"$\mathrm{hi}$") gpu.labelCenter(gr, gr.ihi+1, r"$\mathrm{hi+1}$") gpu.labelCenter(gr, gr.ihi+2, r"$\mathrm{hi+2}$") gpu.labelEdge(gr, ng+nzones/2, r"$i-1/2$") gpu.labelEdge(gr, ng+nzones/2+1, r"$i+1/2$") # draw the data i = 0 while i < nzones: gpu.drawCellAvg(gr, ng+i, a[i], color="r") i += 1 gpu.labelCellAvg(gr, ng+nzones/2, a[nzones/2], r"$\langle a\rangle_i$", color="r") # label dx pylab.plot([gr.xr[gr.ng+nzones/2-1], gr.xr[gr.ng+nzones/2-1]], [-0.35,-0.25], color="k") pylab.plot([gr.xr[gr.ng+nzones/2], gr.xr[gr.ng+nzones/2]], [-0.35,-0.25], color="k") pylab.plot([gr.xr[gr.ng+nzones/2-1], gr.xr[gr.ng+nzones/2]], [-0.3,-0.3], color="k") pylab.text(gr.xc[gr.ng+nzones/2], -0.55, r"$\Delta x$", horizontalalignment="center", fontsize=16) pylab.axis([gr.xmin-2.02*gr.dx,gr.xmax+2.02*gr.dx, -0.5, 1.6]) pylab.axis("off")
gr = gpu.grid(nzones) gpu.drawGrid(gr) gpu.labelCenter(gr, nzones / 2, r"$x_i$") gpu.labelAvg(gr, nzones / 2, a[nzones / 2], r"$\langle f\rangle_i$") gpu.labelCenter(gr, nzones / 2 - 1, r"$x_{i-1}$") gpu.labelCenter(gr, nzones / 2 + 1, r"$x_{i+1}$") gpu.labelCenter(gr, nzones / 2 - 2, r"$x_{i-2}$") gpu.labelCenter(gr, nzones / 2 + 2, r"$x_{i+2}$") gpu.labelEdge(gr, nzones / 2, r"$x_{i-1/2}$") gpu.labelEdge(gr, nzones / 2 + 1, r"$x_{i+1/2}$") n = 0 while (n < nzones): gpu.drawCellAvg(gr, n, a[n]) n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -0.25, 1.2]) pylab.axis("off") pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) f = pylab.gcf() f.set_size_inches(8.0, 2.0) pylab.savefig("fv.png", dpi=200) pylab.savefig("fv.eps")
def evolve(gr, a, C, num, nolimit=1): #------------------------------------------------------------------------- # first frame -- the original cell-averages pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones / 2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 2, r"$i+2$", fontsize="medium") # draw cell averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, a[n], color="r") n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -1.25, 2.0]) pylab.axis("off") print gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) ax = pylab.gca() pylab.text(0.5, 0.75, "initial state (cell averages)", horizontalalignment="center", fontsize=16, color="b", transform=ax.transAxes) pylab.text(0.5, 0.95, "Piecewise Linear Method for Linear Advection", horizontalalignment="center", fontsize=20, color="k", transform=ax.transAxes) f = pylab.gcf() f.set_size_inches(12.8, 7.2) if (nolimit): pylab.savefig("rea-nolimit-start_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-start_%3.3d.eps" % (num)) else: pylab.savefig("rea-start_%3.3d.png" % (num)) pylab.savefig("rea-start_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # second frame -- reconstruction # compute the slopes lda = gpu.lslopes(a, nolimit=nolimit) # draw pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones / 2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 2, r"$i+2$", fontsize="medium") # draw cell averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, a[n], color="0.5", ls=":") n += 1 n = gr.ilo while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="r") n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -1.25, 2.0]) pylab.axis("off") pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) pylab.text(0.5, 0.75, "reconstructed slopes", horizontalalignment="center", fontsize=16, color="b", transform=ax.transAxes) pylab.text(0.5, 0.95, "Piecewise Linear Method for Linear Advection", horizontalalignment="center", fontsize=20, color="k", transform=ax.transAxes) f = pylab.gcf() f.set_size_inches(12.8, 7.2) if (nolimit): pylab.savefig("rea-nolimit-reconstruction_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-reconstruction_%3.3d.eps" % (num)) else: pylab.savefig("rea-reconstruction_%3.3d.png" % (num)) pylab.savefig("rea-reconstruction_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # third frame -- evolve # draw pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones / 2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 2, r"$i+2$", fontsize="medium") # draw cell slopes n = gr.ilo while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="0.75", ls=":") n += 1 # evolve n = gr.ilo while (n <= gr.ihi): gpu.evolveToRight(gr, n, lda, a, C, color="r") n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -1.25, 2.0]) pylab.axis("off") print gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) pylab.text(0.5, 0.75, "evolved with C = {}".format(C), horizontalalignment="center", fontsize=16, color="b", transform=ax.transAxes) pylab.text(0.5, 0.95, "Piecewise Linear Method for Linear Advection", horizontalalignment="center", fontsize=20, color="k", transform=ax.transAxes) f = pylab.gcf() f.set_size_inches(12.8, 7.2) if (nolimit): pylab.savefig("rea-nolimit-evolve_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-evolve_%3.3d.eps" % (num)) else: pylab.savefig("rea-evolve_%3.3d.png" % (num)) pylab.savefig("rea-evolve_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # fourth frame -- re-average # left states (we don't need the right state when u > 0) al = numpy.zeros(2 * gr.ng + gr.nx, dtype=numpy.float64) n = gr.ilo while (n <= gr.ihi + 1): al[n] = a[n - 1] + 0.5 * (1 - C) * lda[n - 1] n += 1 # the Riemann problem just picks the left state. Do a conservative # update anew = numpy.zeros(2 * gr.ng + gr.nx, dtype=numpy.float64) anew[gr.ilo:gr.ihi+1] = a[gr.ilo:gr.ihi+1] + \ C*(al[gr.ilo:gr.ihi+1] - al[gr.ilo+1:gr.ihi+2]) pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones / 2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 - 2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones / 2 + 2, r"$i+2$", fontsize="medium") # show the evolved profiles from the old time n = gr.ilo while (n <= gr.ihi): gpu.evolveToRight(gr, n, lda, a, C, color="0.5", ls=":") n += 1 # draw new averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, anew[n], color="red") n += 1 pylab.axis([gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx, -1.25, 2.0]) pylab.axis("off") print gr.xmin - 0.5 * gr.dx, gr.xmax + 0.5 * gr.dx pylab.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) pylab.text(0.5, 0.75, "averaged profile (final state)", horizontalalignment="center", fontsize=16, color="b", transform=ax.transAxes) pylab.text(0.5, 0.95, "Piecewise Linear Method for Linear Advection", horizontalalignment="center", fontsize=20, color="k", transform=ax.transAxes) f = pylab.gcf() f.set_size_inches(12.8, 7.2) if (nolimit): pylab.savefig("rea-nolimit-final_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-final_%3.3d.eps" % (num)) else: pylab.savefig("rea-final_%3.3d.png" % (num)) pylab.savefig("rea-final_%3.3d.eps" % (num)) return anew
gpu.drawGrid(gr) gpu.labelCenter(gr, nzones/2, r"$i$") gpu.labelCenter(gr, nzones/2-1, r"$i-1$") gpu.labelCenter(gr, nzones/2+1, r"$i+1$") gpu.labelCenter(gr, nzones/2-2, r"$i-2$") gpu.labelCenter(gr, nzones/2+2, r"$i+2$") gpu.labelEdge(gr, nzones/2, r"$i-1/2$") gpu.labelEdge(gr, nzones/2+1, r"$i+1/2$") # draw the data i = 0 while i < nzones: gpu.drawCellAvg(gr, i, a[i], color="r") i += 1 gpu.labelCellAvg(gr, nzones/2, a[nzones/2], r"$\langle f\rangle_i$", color="r") # label dx pylab.plot([gr.xr[gr.ng+nzones/2-1], gr.xr[gr.ng+nzones/2-1]], [-0.35,-0.25], color="k") pylab.plot([gr.xr[gr.ng+nzones/2], gr.xr[gr.ng+nzones/2]], [-0.35,-0.25], color="k") pylab.plot([gr.xr[gr.ng+nzones/2-1], gr.xr[gr.ng+nzones/2]], [-0.3,-0.3], color="k") pylab.text(gr.xc[gr.ng+nzones/2], -0.45, r"$\Delta x$", horizontalalignment="center") pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.5, 1.2]) pylab.axis("off")
def riemann(): # grid info xmin = 0.0 xmax = 1.0 nzones = 4 ng = 2 gr = gpu.grid(nzones, ng=ng) # interior atemp = numpy.array([0.8, 0.7, 0.4, 0.5]) a = numpy.zeros(2*gr.ng + gr.nx, dtype=numpy.float64) # fill interior and ghost cells a[gr.ilo:gr.ihi+1] = atemp[:] a[0:gr.ilo] = a[gr.ihi-1:gr.ihi+1] a[gr.ihi:2*gr.ng+gr.nx] = a[gr.ihi] #------------------------------------------------------------------------ # plot a domain without ghostcells gpu.drawGrid(gr, emphasizeEnd=1, drawGhost=1) gpu.labelCenter(gr, gr.ng-2, r"$\mathrm{lo-2}$") gpu.labelCenter(gr, gr.ng-1, r"$\mathrm{lo-1}$") gpu.labelCenter(gr, gr.ng, r"$\mathrm{lo}$") gpu.labelCenter(gr, gr.ng+1, r"$\mathrm{lo+1}$") gpu.labelEdge(gr, gr.ng, r"$\mathrm{lo}-1/2$") # draw cell averages n = 0 while n < gr.ng+gr.nx: gpu.drawCellAvg(gr, n, a[n], color="0.5", ls=":") n += 1 # get slopes lda = gpu.lslopes(a, nolimit=1) n = gr.ilo-1 while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="r") n += 1 # compute the states to the left and right of lo-1/2 C = 0.7 # CFL al = a[gr.ilo-1] + 0.5*gr.dx*(1.0 - C)*lda[gr.ilo-1] ar = a[gr.ilo] - 0.5*gr.dx*(1.0 + C)*lda[gr.ilo] # L gpu.markCellRightState(gr, ng-1, r"$a_{\mathrm{lo}+1/2,L}^{n+1/2}$", value=al, vertical="top", color="b") # R gpu.markCellLeftState(gr, ng, r"$a_{\mathrm{lo}+1/2,R}^{n+1/2}$", value=ar, vertical="top", color="b") pylab.xlim(gr.xl[0]-0.15*gr.dx,gr.xr[ng+1]+0.15*gr.dx) pylab.ylim(-0.25, 1.1) pylab.axis("off") pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) pylab.tight_layout() pylab.savefig("riemann-bc.png") pylab.savefig("riemann-bc.eps")
def evolve(gr, a, C, num, nolimit=1): #------------------------------------------------------------------------- # first frame -- the original cell-averages pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones/2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+2, r"$i+2$", fontsize="medium") # draw cell averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, a[n], color="r") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") print gr.xmin-0.5*gr.dx, gr.xmax+0.5*gr.dx pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) if (nolimit): pylab.savefig("rea-nolimit-start_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-start_%3.3d.eps" % (num)) else: pylab.savefig("rea-start_%3.3d.png" % (num)) pylab.savefig("rea-start_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # second frame -- reconstruction # compute the slopes lda = gpu.lslopes(a, nolimit=nolimit) # draw pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones/2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+2, r"$i+2$", fontsize="medium") # draw cell averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, a[n], color="0.5", ls=":") n += 1 n = gr.ilo while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="r") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) if (nolimit): pylab.savefig("rea-nolimit-reconstruction_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-reconstruction_%3.3d.eps" % (num)) else: pylab.savefig("rea-reconstruction_%3.3d.png" % (num)) pylab.savefig("rea-reconstruction_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # third frame -- evolve # draw pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones/2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+2, r"$i+2$", fontsize="medium") # draw cell slopes n = gr.ilo while (n <= gr.ihi): gpu.drawSlope(gr, n, lda[n], a[n], color="0.75", ls=":") n += 1 # evolve n = gr.ilo while (n <= gr.ihi): gpu.evolveToRight(gr, n, lda, a, C, color="r") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") print gr.xmin-0.5*gr.dx, gr.xmax+0.5*gr.dx pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) if (nolimit): pylab.savefig("rea-nolimit-evolve_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-evolve_%3.3d.eps" % (num)) else: pylab.savefig("rea-evolve_%3.3d.png" % (num)) pylab.savefig("rea-evolve_%3.3d.eps" % (num)) #------------------------------------------------------------------------- # fourth frame -- re-average # left states (we don't need the right state when u > 0) al = numpy.zeros(2*gr.ng + gr.nx, dtype=numpy.float64) n = gr.ilo while (n <= gr.ihi+1): al[n] = a[n-1] + 0.5*(1 - C)*lda[n-1] n += 1 # the Riemann problem just picks the left state. Do a conservative # update anew = numpy.zeros(2*gr.ng + gr.nx, dtype=numpy.float64) anew[gr.ilo:gr.ihi+1] = a[gr.ilo:gr.ihi+1] + \ C*(al[gr.ilo:gr.ihi+1] - al[gr.ilo+1:gr.ihi+2]) pylab.clf() gpu.drawGrid(gr) gpu.labelCenter(gr, gr.ng + nzones/2, r"$i$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-1, r"$i-1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+1, r"$i+1$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2-2, r"$i-2$", fontsize="medium") gpu.labelCenter(gr, gr.ng + nzones/2+2, r"$i+2$", fontsize="medium") # show the evolved profiles from the old time n = gr.ilo while (n <= gr.ihi): gpu.evolveToRight(gr, n, lda, a, C, color="0.5", ls=":") n += 1 # draw new averages n = gr.ilo while (n <= gr.ihi): gpu.drawCellAvg(gr, n, anew[n], color="red") n += 1 pylab.axis([gr.xmin-0.5*gr.dx,gr.xmax+0.5*gr.dx, -0.25, 1.2]) pylab.axis("off") print gr.xmin-0.5*gr.dx, gr.xmax+0.5*gr.dx pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95) f = pylab.gcf() f.set_size_inches(8.0,2.0) if (nolimit): pylab.savefig("rea-nolimit-final_%3.3d.png" % (num)) pylab.savefig("rea-nolimit-final_%3.3d.eps" % (num)) else: pylab.savefig("rea-final_%3.3d.png" % (num)) pylab.savefig("rea-final_%3.3d.eps" % (num)) return anew