def jobman(state, channel): # load dataset rng = numpy.random.RandomState(state['seed']) # declare the dimensionalies of the input and output if state['chunks'] == 'words': state['n_in'] = 10000 state['n_out'] = 10000 else: state['n_in'] = 50 state['n_out'] = 50 train_data, valid_data, test_data = get_text_data(state) ## BEGIN Tutorial ### Define Theano Input Variables x = TT.lvector('x') y = TT.lvector('y') h0 = theano.shared( numpy.zeros((eval(state['nhids'])[-1], ), dtype='float32')) ### Neural Implementation of the Operators: \oplus #### Word Embedding emb_words = MultiLayer(rng, n_in=state['n_in'], n_hids=eval(state['inp_nhids']), activation=eval(state['inp_activ']), init_fn='sample_weights_classic', weight_noise=state['weight_noise'], rank_n_approx=state['rank_n_approx'], scale=state['inp_scale'], sparsity=state['inp_sparse'], learn_bias=True, bias_scale=eval(state['inp_bias']), name='emb_words') #### Deep Transition Recurrent Layer rec = eval(state['rec_layer'])( rng, eval(state['nhids']), activation=eval(state['rec_activ']), #activation = 'TT.nnet.sigmoid', bias_scale=eval(state['rec_bias']), scale=eval(state['rec_scale']), sparsity=eval(state['rec_sparse']), init_fn=eval(state['rec_init']), weight_noise=state['weight_noise'], name='rec') #### Stiching them together ##### (1) Get the embedding of a word x_emb = emb_words(x, no_noise_bias=state['no_noise_bias']) ##### (2) Embedding + Hidden State via DT Recurrent Layer reset = TT.scalar('reset') rec_layer = rec(x_emb, n_steps=x.shape[0], init_state=h0 * reset, no_noise_bias=state['no_noise_bias'], truncate_gradient=state['truncate_gradient'], batch_size=1) ## BEGIN Exercise: DOT-RNN ### Neural Implementation of the Operators: \lhd #### Exercise (1) #### TODO: Define a layer from the hidden state to the intermediate layer emb_layer = MultiLayer(rng, ) #### Exercise (1) #### TODO: Define a layer from the input to the intermediate Layer #### Hidden State: Combine emb_state and emb_words_out #### Exercise (1) #### TODO: Define an activation layer #### Exercise (2) #### TODO: Define a dropout layer #### Softmax Layer output_layer = SoftmaxLayer(rng, eval(state['dout_nhid']), state['n_out'], scale=state['out_scale'], bias_scale=state['out_bias_scale'], init_fn="sample_weights_classic", weight_noise=state['weight_noise'], sparsity=state['out_sparse'], sum_over_time=True, name='out') ### Few Optional Things #### Direct shortcut from x to y if state['shortcut_inpout']: shortcut = MultiLayer(rng, n_in=state['n_in'], n_hids=eval(state['inpout_nhids']), activations=eval(state['inpout_activ']), init_fn='sample_weights_classic', weight_noise=state['weight_noise'], scale=eval(state['inpout_scale']), sparsity=eval(state['inpout_sparse']), learn_bias=eval(state['inpout_learn_bias']), bias_scale=eval(state['inpout_bias']), name='shortcut') #### Learning rate scheduling (1/(1+n/beta)) state['clr'] = state['lr'] def update_lr(obj, cost): stp = obj.step if isinstance(obj.state['lr_start'], int) and stp > obj.state['lr_start']: time = float(stp - obj.state['lr_start']) new_lr = obj.state['clr'] / (1 + time / obj.state['lr_beta']) obj.lr = new_lr if state['lr_adapt']: rec.add_schedule(update_lr) ### Neural Implementations of the Language Model #### Training if state['shortcut_inpout']: additional_inputs = [rec_layer, shortcut(x)] else: additional_inputs = [rec_layer] ##### Exercise (1): Compute the output intermediate layer ##### TODO: Compute the output intermediate layer ##### Exercise (2): Apply Dropout ##### TODO: Apply the dropout layer train_model = output_layer(outhid, no_noise_bias=state['no_noise_bias'], additional_inputs=additional_inputs).train( target=y, scale=numpy.float32(1. / state['seqlen'])) nw_h0 = rec_layer.out[rec_layer.out.shape[0] - 1] if state['carry_h0']: train_model.updates += [(h0, nw_h0)] #### Validation h0val = theano.shared( numpy.zeros((eval(state['nhids'])[-1], ), dtype='float32')) rec_layer = rec(emb_words(x, use_noise=False), n_steps=x.shape[0], batch_size=1, init_state=h0val * reset, use_noise=False) nw_h0 = rec_layer.out[rec_layer.out.shape[0] - 1] ##### Exercise (1): ##### TODO: Compute the output intermediate layer ##### Exercise (2): Apply Dropout ##### TODO: Apply the dropout layer without noise if state['shortcut_inpout']: additional_inputs = [rec_layer, shortcut(x, use_noise=False)] else: additional_inputs = [rec_layer] valid_model = output_layer(outhid, additional_inputs=additional_inputs, use_noise=False).validate(target=y, sum_over_time=True) valid_updates = [] if state['carry_h0']: valid_updates = [(h0val, nw_h0)] valid_fn = theano.function([x, y, reset], valid_model.cost, name='valid_fn', updates=valid_updates) #### Sampling ##### single-step sampling def sample_fn(word_tm1, h_tm1): x_emb = emb_words(word_tm1, use_noise=False, one_step=True) h0 = rec(x_emb, state_before=h_tm1, one_step=True, use_noise=False)[-1] outhid = outhid_dropout(outhid_activ( emb_state(h0, use_noise=False, one_step=True) + emb_words_out(word_tm1, use_noise=False, one_step=True), one_step=True), use_noise=False, one_step=True) word = output_layer.get_sample(state_below=outhid, additional_inputs=[h0], temp=1.) return word, h0 ##### scan for iterating the single-step sampling multiple times [samples, summaries], updates = scan(sample_fn, states=[ TT.alloc(numpy.int64(0), state['sample_steps']), TT.alloc(numpy.float32(0), 1, eval(state['nhids'])[-1]) ], n_steps=state['sample_steps'], name='sampler_scan') ##### build a Theano function for sampling sample_fn = theano.function([], [samples], updates=updates, profile=False, name='sample_fn') ##### Load a dictionary dictionary = numpy.load(state['dictionary']) if state['chunks'] == 'chars': dictionary = dictionary['unique_chars'] else: dictionary = dictionary['unique_words'] def hook_fn(): sample = sample_fn()[0] print 'Sample:', if state['chunks'] == 'chars': print "".join(dictionary[sample]) else: for si in sample: print dictionary[si], print ### Build and Train a Model #### Define a model model = LM_Model(cost_layer=train_model, weight_noise_amount=state['weight_noise_amount'], valid_fn=valid_fn, clean_before_noise_fn=False, noise_fn=None, rng=rng) if state['reload']: model.load(state['prefix'] + 'model.npz') #### Define a trainer ##### Training algorithm (SGD) if state['moment'] < 0: algo = SGD(model, state, train_data) else: algo = SGD_m(model, state, train_data) ##### Main loop of the trainer main = MainLoop(train_data, valid_data, test_data, model, algo, state, channel, train_cost=False, hooks=hook_fn, validate_postprocess=eval(state['validate_postprocess'])) ## Run! main.main()
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of generating simple 1d sequences with RNN.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "plot"], help="The mode to run. Use `train` to train a new model" " and `plot` to plot a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("--input-noise", type=float, default=0.0, help="Adds Gaussian noise of given intensity to the " " training sequences.") parser.add_argument( "--function", default="lambda a, x: numpy.sin(a * x)", help="An analytical description of the sequence family to learn." " The arguments before the last one are considered parameters.") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot") parser.add_argument("--params", help="Parameter values for plotting") args = parser.parse_args() function = eval(args.function) num_params = len(inspect.getargspec(function).args) - 1 class Emitter(TrivialEmitter): @application def cost(self, readouts, outputs): """Compute MSE.""" return ((readouts - outputs)**2).sum(axis=readouts.ndim - 1) transition = GatedRecurrent(name="transition", activation=Tanh(), dim=10, weights_init=Orthogonal()) with_params = AddParameters(transition, num_params, "params", name="with_params") generator = SequenceGenerator(LinearReadout( readout_dim=1, source_names=["states"], emitter=Emitter(name="emitter"), name="readout"), with_params, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat(Selector(generator).get_params().keys())) if args.mode == "train": seed = 1 rng = numpy.random.RandomState(seed) batch_size = 10 generator.initialize() cost = Cost( generator.cost(tensor.tensor3('x'), params=tensor.matrix("params")).sum()) if args.input_noise: cost.apply_noise(cost.inputs, args.input_noise) gh_model = GroundhogModel(generator, cost) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() data = SeriesIterator(rng, function, 100, batch_size) trainer = SGD(gh_model, state, data) main_loop = MainLoop(data, None, None, gh_model, trainer, state, None) main_loop.load() main_loop.main() elif args.mode == "plot": load_params(generator, args.prefix + "model.npz") params = tensor.matrix("params") sample = theano.function([params], generator.generate(params=params, n_steps=args.steps, batch_size=1)) param_values = numpy.array(map(float, args.params.split()), dtype=floatX) states, outputs, _ = sample(param_values[None, :]) actual = outputs[:, 0, 0] desired = numpy.array( [function(*(list(param_values) + [T])) for T in range(args.steps)]) print("MSE: {}".format(((actual - desired)**2).sum())) pyplot.plot(numpy.hstack([actual[:, None], desired[:, None]])) pyplot.show() else: assert False
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of generating a Markov chain with RNN.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "sample"], help="The mode to run. Use `train` to train a new model" " and `sample` to sample a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot") args = parser.parse_args() dim = 10 num_states = ChainIterator.num_states feedback_dim = 8 transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim) generator = SequenceGenerator(LinearReadout( readout_dim=num_states, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(num_states, feedback_dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) if args.mode == "train": rng = numpy.random.RandomState(1) batch_size = 50 generator.push_initialization_config() transition.weights_init = Orthogonal() generator.initialize() logger.debug("transition.weights_init={}".format( transition.weights_init)) cost = generator.cost(tensor.lmatrix('x')).sum() gh_model = GroundhogModel(generator, cost) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() data = ChainIterator(rng, 100, batch_size) trainer = SGD(gh_model, state, data) main_loop = MainLoop(data, None, None, gh_model, trainer, state, None) main_loop.main() elif args.mode == "sample": load_params(generator, args.prefix + "model.npz") sample = ComputationGraph( generator.generate(n_steps=args.steps, batch_size=1, iterate=True)).function() states, outputs, costs = [data[:, 0] for data in sample()] numpy.set_printoptions(precision=3, suppress=True) print("Generation cost:\n{}".format(costs.sum())) freqs = numpy.bincount(outputs).astype(floatX) freqs /= freqs.sum() print("Frequencies:\n {} vs {}".format(freqs, ChainIterator.equilibrium)) trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX) for a, b in zip(outputs, outputs[1:]): trans_freqs[a, b] += 1 trans_freqs /= trans_freqs.sum(axis=1)[:, None] print("Transition frequencies:\n{}\nvs\n{}".format( trans_freqs, ChainIterator.trans_prob)) else: assert False
def main(): logging.basicConfig( level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") parser = argparse.ArgumentParser( "Case study of language modeling with RNN", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "mode", choices=["train", "sample"], help="The mode to run. Use `train` to train a new model" " and `sample` to sample a sequence generated by an" " existing one.") parser.add_argument("prefix", default="sine", help="The prefix for model, timing and state files") parser.add_argument("state", nargs="?", default="", help="Changes to Groundhog state") parser.add_argument("--path", help="Path to a language dataset") parser.add_argument("--dict", help="Path to the dataset dictionary") parser.add_argument("--restart", help="Start anew") parser.add_argument("--reset", action="store_true", default=False, help="Reset the hidden state between batches") parser.add_argument("--steps", type=int, default=100, help="Number of steps to plot for the 'sample' mode" " OR training sequence length for the 'train' mode.") args = parser.parse_args() logger.debug("Args:\n" + str(args)) dim = 200 num_chars = 50 transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim, weights_init=Orthogonal()) generator = SequenceGenerator(LinearReadout( readout_dim=num_chars, source_names=["states"], emitter=SoftmaxEmitter(name="emitter"), feedbacker=LookupFeedback(num_chars, dim, name='feedback'), name="readout"), transition, weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), name="generator") generator.allocate() logger.debug("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in Selector(generator).get_params().items()], width=120)) if args.mode == "train": batch_size = 1 seq_len = args.steps generator.initialize() # Build cost computation graph that uses the saved hidden states. # An issue: for Groundhog this is completely transparent, that's # why it does not carry the hidden state over the period when # validation in done. We should find a way to fix in the future. x = tensor.lmatrix('x') init_states = shared_floatx_zeros((batch_size, dim), name='init_states') reset = tensor.scalar('reset') cost = ComputationGraph( generator.cost(x, states=init_states * reset).sum()) # TODO: better search routine states = [ v for v in cost.variables if hasattr(v.tag, 'application_call') and v.tag.application_call.brick == generator.transition and (v.tag.application_call.application == generator.transition.apply) and v.tag.role == VariableRole.OUTPUT and v.tag.name == 'states' ] assert len(states) == 1 states = states[0] gh_model = GroundhogModel(generator, cost) gh_model.properties.append( ('bpc', cost.outputs[0] * numpy.log(2) / seq_len)) gh_model.properties.append(('mean_init_state', init_states.mean())) gh_model.properties.append(('reset', reset)) if not args.reset: gh_model.updates.append((init_states, states[-1])) state = GroundhogState(args.prefix, batch_size, learning_rate=0.0001).as_dict() changes = eval("dict({})".format(args.state)) state.update(changes) def output_format(x, y, reset): return dict(x=x[:, None], reset=reset) train, valid, test = [ LMIterator(batch_size=batch_size, use_infinite_loop=mode == 'train', path=args.path, seq_len=seq_len, mode=mode, chunks='chars', output_format=output_format, can_fit=True) for mode in ['train', 'valid', 'test'] ] trainer = SGD(gh_model, state, train) state['on_nan'] = 'warn' state['cutoff'] = 1. main_loop = MainLoop(train, valid, None, gh_model, trainer, state, None) if not args.restart: main_loop.load() main_loop.main() elif args.mode == "sample": load_params(generator, args.prefix + "model.npz") chars = numpy.load(args.dict)['unique_chars'] sample = ComputationGraph( generator.generate(n_steps=args.steps, batch_size=10, iterate=True)).function() states, outputs, costs = sample() for i in range(10): print("Generation cost: {}".format(costs[:, i].sum())) print("".join([chars[o] for o in outputs[:, i]])) else: assert False