示例#1
0
def mockreadfail(self, rack, board, device):
    """Mock method to monkeypatch the client read method to fail."""
    raise grpc.RpcError()
示例#2
0
 def testUnknownExceptionParser(self):
     response = grpc.RpcError()
     response.code = lambda: "unknown"
     response.details = lambda: "unknown"
     self.assertRaises(opencue.exception.CueException,
                       lambda: testRaise(response))
示例#3
0
 def ReportStates(self, request, context):
     if request.states[0].type == "fail":
         raise grpc.RpcError("Test Exception")
     return ReportStatesResponse(unreportedStates=[], )
示例#4
0
 def testNotFoundExceptionParser(self):
     response = grpc.RpcError()
     response.code = lambda: grpc.StatusCode.NOT_FOUND
     response.details = lambda: "testing not found"
     self.assertRaises(opencue.exception.EntityNotFoundException,
                       lambda: testRaise(response))
示例#5
0
 def testDeadlineExceptionParser(self):
     response = grpc.RpcError()
     response.code = lambda: grpc.StatusCode.DEADLINE_EXCEEDED
     response.details = lambda: "deadline exceeded"
     self.assertRaises(opencue.exception.DeadlineExceededException,
                       lambda: testRaise(response))
示例#6
0
 def Recv():
     error = grpc.RpcError()
     error.code = lambda: grpc.StatusCode.PERMISSION_DENIED
     error.details = lambda: 'Did not work...'
     raise error
示例#7
0
def _raise_grpc_error_unavailable(*args):
  del args  # Unused
  error = grpc.RpcError()
  error.code = lambda: grpc.StatusCode.UNAVAILABLE
  raise error
    def MinNodesToRemove(self, request, context):

        print('>>>>>>>>>>>>>>In endpoint MinNodesToRemove')
        print(time.strftime("%c"))

        graph = request.graph
        source_nodes = request.source_node
        target_nodes = request.target_node

        g = robustness.Robustness()

        try:

            edges_list = []

            for edges_proto in graph.edges:
                edges_list.append(list(edges_proto.edge))

            graph_in = {"nodes": list(graph.nodes), "edges": edges_list}
            source_nodes_in = str(source_nodes)
            target_nodes_in = str(target_nodes)

            ret = g.min_nodes_to_remove(graph_in, source_nodes_in,
                                        target_nodes_in)

            resp = network_analytics_robustness_pb2.MinNodesToRemoveResponse(
                status=ret[0], message=ret[1])

            if resp.status:
                nodes_resp = ret[2]["nodes"]
                edges_resp = []
                for edge_ret in ret[2]["edges"]:
                    edges_resp.append(
                        network_analytics_robustness_pb2.Edge(edge=edge_ret))

                resp = network_analytics_robustness_pb2.MinNodesToRemoveResponse(
                    status=ret[0],
                    message=ret[1],
                    nodes_output=nodes_resp,
                    edges_output=edges_resp)

            else:

                print(time.strftime("%c"))
                print('Waiting for next call on port 5002.')

                raise grpc.RpcError(grpc.StatusCode.UNKNOWN, ret[1])

            print('status:', resp.status)
            print('message:', resp.message)
            print(time.strftime("%c"))
            print('Waiting for next call on port 5002.')

            return resp

        except Exception as e:

            logging.exception("message")

            print(time.strftime("%c"))
            print('Waiting for next call on port 5002.')

            raise grpc.RpcError(grpc.StatusCode.UNKNOWN, str(e))
    def MostImportantNodesEdgesSubset(self, request, context):

        print('>>>>>>>>>>>>>>In endpoint MostImportantNodesEdgesSubset')
        print(time.strftime("%c"))

        graph = request.graph
        source_nodes = request.source_nodes
        target_nodes = request.target_nodes
        T = request.Type

        g = robustness.Robustness()

        try:

            edges_list = []

            for edges_proto in graph.edges:
                edges_list.append(list(edges_proto.edge))

            weights_list = list(graph.weights)

            nodes_list = list(graph.nodes)

            if len(weights_list) > 0:
                graph_in = {
                    "nodes": nodes_list,
                    "edges": edges_list,
                    "weights": weights_list
                }
            else:
                graph_in = {"nodes": nodes_list, "edges": edges_list}

            source_nodes_in = list(source_nodes)
            target_nodes_in = list(target_nodes)

            ret = g.most_important_nodes_edges_subset(
                graph_in, source_nodes_in, target_nodes_in, T,
                request.normalized, request.directed, request.weight)

            resp = network_analytics_robustness_pb2.MostImportantNodesEdgesSubsetResponse(
                status=ret[0], message=ret[1])

            if resp.status:
                betweenness_centrality = ret[2]["betweenness_centrality"]

                if (T == 0):
                    node_resp = network_analytics_robustness_pb2.node_betweenness(
                        node=betweenness_centrality[0],
                        node_centrality_value=betweenness_centrality[1])
                    resp = network_analytics_robustness_pb2.MostImportantNodesEdgesSubsetResponse(
                        status=ret[0],
                        message=ret[1],
                        node_betweenness_centrality=node_resp)

                elif (T == 1):
                    edges_resp = []
                    for edge_ret in betweenness_centrality[0]:
                        edges_resp.append(
                            network_analytics_robustness_pb2.Edge(
                                edge=list(edge_ret)))
                    graph_resp = network_analytics_robustness_pb2.edge_betweenness(
                        edge=edges_resp,
                        edge_centrality_value=betweenness_centrality[1])
                    resp = network_analytics_robustness_pb2.MostImportantNodesEdgesSubsetResponse(
                        status=ret[0],
                        message=ret[1],
                        edge_betweenness_centrality=graph_resp)

            else:

                print(time.strftime("%c"))
                print('Waiting for next call on port 5002.')

                raise grpc.RpcError(grpc.StatusCode.UNKNOWN, ret[1])

            print('status:', resp.status)
            print('message:', resp.message)
            print(time.strftime("%c"))
            print('Waiting for next call on port 5002.')

            return resp

        except Exception as e:

            logging.exception("message")

            print(time.strftime("%c"))
            print('Waiting for next call on port 5002.')

            raise grpc.RpcError(grpc.StatusCode.UNKNOWN, str(e))
示例#10
0
    def Classify(self, request, context):
        try:
            example = request.input.example_list.examples[0]

            start_time_millis = self.getCurrentTimeinMillis()
            time_1 = datetime.now()
            if self._Validations(request, context) is True:
                time_2 = datetime.now()

                example = request.input.example_list.examples[0]

                idx = 0
                final_input = []
                final_labels = []
                for k in example.features.feature.keys():
                    v = example.features.feature[k]
                    int_list_value = list(v.int64_list.value)
                    float_list_value = list(v.float_list.value)
                    byte_list_value = list(v.bytes_list.value)

                    if len(int_list_value) > 0:
                        final_input.append(int_list_value)
                        final_labels.append(k)
                    elif len(float_list_value) > 0:
                        final_input.append(float_list_value)
                        final_labels.append(k)
                    elif len(byte_list_value) > 0:
                        final_input.append(byte_list_value)
                        final_labels.append(k)
                    else:
                        LOG.info("Input param empty, ignoring it")
                    idx = idx + 1

                classification_request = pd.DataFrame.from_records(
                    list(zip(*final_input)), columns=final_labels)

                try:
                    classification_outputs = self.model.wrapper_classification_func(
                        classification_request)
                    LOG.info(
                        "the output from the model's classification function %s",
                        classification_outputs)
                    response = tensorflow__serving_dot_apis_dot_classification__pb2.ClassificationResponse(
                    )

                except grpc.RpcError as grpc_error:
                    end_time_millis = self.getCurrentTimeinMillis()
                    LOG.error("Error while doing Classification")
                    requestDurationInMillis = str(end_time_millis -
                                                  start_time_millis)
                    self.logRequests(self.model.model_name,
                                     requestDurationInMillis, str(0))
                    LOG.error("grpc error : %s", str(grpc_error))
                    s = getattr(grpc_error, 'message', str(grpc_error))
                    raise grpc.RpcError(grpc_error)
                    return None

                classifications = []
                for idx in range(0, classification_request.shape[0]):
                    classes = []
                    classification = tensorflow__serving_dot_apis_dot_classification__pb2.Classifications(
                    )
                    for k, v in classification_outputs.items():
                        class_data = tensorflow__serving_dot_apis_dot_classification__pb2.Class(
                        )
                        class_data.label = "Class-" + k
                        class_data.score = v[idx]
                        classes.append(class_data)
                    classification.classes.extend(classes)
                    classifications.append(classification)
                response.result.classifications.extend(classifications)

                return response
            else:
                return None
        except Exception as ex:
            s = getattr(ex, 'message', str(ex))
            raise Exception(s)
            return None
示例#11
0
 def raise_grpc_error(context, status_code, msg):
     # Make sure the error handling, including logging, works as intended in the client
     context.set_code(status_code)
     context.set_details(msg)
     # Raise error on the plugin-side
     raise grpc.RpcError(status_code, msg)
示例#12
0
    def Predict(self, request, context):
        try:
            start_time_millis = self.getCurrentTimeinMillis()
            time_1 = datetime.now()
            if self._Validations(request, context):
                time_2 = datetime.now()
                predict_request = {}

                for k, v in request.inputs.items():
                    predict_request[k] = tensor_util.MakeNdarray(
                        request.inputs[k])
                    if v.dtype == dtypes.string:
                        predict_request[k] = predict_request[k].astype(str)

                time_3 = datetime.now()

                for k, v in predict_request.items():
                    LOG.info("the key  :%s", k)
                    LOG.info("the value :%s", v)
                # Add the more specific try catch request for predict request

                try:
                    predict_outputs = self.model.wrapper_predict_func(
                        predict_request)
                    LOG.info("the output from the model's predict function %s",
                             predict_outputs)
                    response = tensorflow__serving_dot_apis_dot_predict__pb2.PredictResponse(
                    )
                except grpc.RpcError as grpc_error:
                    end_time_millis = self.getCurrentTimeinMillis()
                    LOG.error("Error while doing Prediction")
                    requestDurationInMillis = str(end_time_millis -
                                                  start_time_millis)
                    self.logRequests(self.model.model_name,
                                     requestDurationInMillis, str(0))
                    LOG.error("grpc error : %s", str(grpc_error))
                    s = getattr(grpc_error, 'message', str(grpc_error))
                    raise grpc.RpcError(grpc_error)
                    return None

                for k, v in predict_outputs.items():
                    # Disabling this pylint error after checking that this line adheres to
                    # tensorflow documentation
                    # pylint: disable=E1101
                    response.outputs[k].CopyFrom(
                        tf.contrib.util.make_tensor_proto(v))
                ''' here print the response time taken to serve the request '''

                time_4 = datetime.now()
                end_time_millis = self.getCurrentTimeinMillis()

                validation_time_ms = (time_2 - time_1).microseconds
                parse_time = (time_3 - time_2).microseconds
                handle_time = (time_4 - time_3).microseconds
                model_metrics = {
                    "mlf_mc_model_name": self.model.model_name,
                    "mlf_mc_token_validation_time_ms":
                    validation_time_ms / 1000,
                    "mlf_mc_parse_time_ms": parse_time / 1000,
                    "mlf_mc_handle_time_ms": handle_time / 1000
                }
                self.collect_metrics(self.model.model_name, model_metrics)
                requestDurationInMillis = str(end_time_millis -
                                              start_time_millis)
                self.logRequests(self.model.model_name,
                                 requestDurationInMillis, str(1))
                return response
            else:
                requestDurationInMillis = self.getCurrentTimeinMillis()
                LOG.error(
                    "Error while validating JWT token, token not validated successfully"
                )
                self.logRequests(self.model.model_name,
                                 requestDurationInMillis, str(0))
                return None

        except Exception as ex:
            s = getattr(ex, 'message', str(ex))
            raise Exception(s)
            return None
示例#13
0
    def test_ctor_w_rpc_error_on_prefetch(self):
        wrapped = mock.MagicMock()
        wrapped.__next__.side_effect = grpc.RpcError()

        with pytest.raises(grpc.RpcError):
            self._make_one(wrapped)
示例#14
0
 def DisableStaticRules(self, _: DisableStaticRuleRequest) -> Void:
     raise grpc.RpcError()
    def PLSA(self,request,context):

        print('>>>>>>>>>>>>>>In endpoint plsa')
        print(time.strftime("%c"))


        docs = request.docs
        num_topics = request.num_topics
        topic_divider = request.topic_divider
        maxiter = request.maxiter
        beta = request.beta


        param_error = False
        message = ''

        try :

            if len(docs) < 2:
                message = 'Length of docs should be at least two'
                param_error =True

            if topic_divider < 0:
                param_error = True
                message = 'topic_divider parameter can not be a negative nubmer'

            if topic_divider == 0 and num_topics < 2:
                param_error = True
                message = 'Number of topics should be at least two'

            if maxiter < 0:
                param_error = True
                message = 'maxiter should be greater than zero'

            if beta < 0 or beta > 1:
                param_error = True
                message = 'beta should have value of (0,1]'


            if param_error:
                print(time.strftime("%c"))
                print('Waiting for next call on port 5000.')
                raise grpc.RpcError(grpc.StatusCode.UNKNOWN, message)


        except Exception as e:

            logging.exception("message")

            print(time.strftime("%c"))
            print('Waiting for next call on port 5000.')

            raise grpc.RpcError(grpc.StatusCode.UNKNOWN, str(e))




        try:

            unique_folder_naming = str(datetime.datetime.now()).replace(':', '-').replace('.', '-') + '^' + str(random.randint(100000000000, 999999999999)) + '/'

            thread1 = threading.Thread(target=generate_topics_plsa, args=(docs,unique_folder_naming,num_topics,topic_divider,maxiter,beta))
            thread1.start()

            resp = topic_analysis_pb2.PLSAResponse(status=True, message='success', handle=unique_folder_naming[:-1].replace('-','e').replace(' ','d').replace('^','y'))


            print('status:',resp.status)
            print('message:',resp.message)
            print('Waiting for next call on port 5000.')

            return resp


        except Exception as e:

            logging.exception("message")

            print(time.strftime("%c"))
            print('Waiting for next call on port 5000.')

            raise grpc.RpcError(grpc.StatusCode.UNKNOWN, str(e))
示例#16
0
 def fake_add_done(_):
     grpc_err = grpc.RpcError()
     grpc_err.code = lambda: grpc.StatusCode.UNKNOWN
     grpc_err.details = lambda: "Test Exception"
     raise grpc_err
示例#17
0
 def Recv():
     error = grpc.RpcError()
     error.code = lambda: grpc.StatusCode.OUT_OF_RANGE
     error.details = lambda: 'Did not work...'
     raise error
示例#18
0
def mockwritefail(self, rack, board, device, data):
    """Mock method to monkeypatch the client write method to fail."""
    raise grpc.RpcError()
示例#19
0
 def Recv():
     error = grpc.RpcError()
     error.code = lambda: grpc.StatusCode.INVALID_ARGUMENT
     error.details = lambda: 'Did not work...'
     raise error
示例#20
0
  def push(self, item, push_state, content=None):
    assert isinstance(item, Item)
    assert item.digest is not None
    assert item.size is not None
    assert isinstance(push_state, _IsolateServerGrpcPushState)

    # Default to item.content().
    content = item.content() if content is None else content
    guard_memory_use(self, content, item.size)
    self._num_pushes += 1

    try:
      def chunker():
        # Returns one bit of content at a time
        if (isinstance(content, str)
            or not isinstance(content, collections.Iterable)):
          yield content
        else:
          for chunk in content:
            yield chunk
      def slicer():
        # Ensures every bit of content is under the gRPC max size; yields
        # proto messages to send via gRPC.
        request = bytestream_pb2.WriteRequest()
        u = uuid.uuid4()
        request.resource_name = '%s/uploads/%s/blobs/%s/%d' % (
            self._proxy.prefix, u, item.digest, item.size)
        request.write_offset = 0
        for chunk in chunker():
          # Make sure we send at least one chunk for zero-length blobs
          has_sent_anything = False
          while chunk or not has_sent_anything:
            has_sent_anything = True
            slice_len = min(len(chunk), NET_IO_FILE_CHUNK)
            request.data = chunk[:slice_len]
            if request.write_offset + slice_len == item.size:
              request.finish_write = True
            yield request
            request.write_offset += slice_len
            chunk = chunk[slice_len:]

      response = None
      try:
        response = self._proxy.call_no_retries('Write', slicer())
      except grpc.RpcError as r:
        if r.code() == grpc.StatusCode.ALREADY_EXISTS:
          # This is legit - we didn't check before we pushed so no problem if
          # it's already there.
          self._already_exists += 1
          if self._already_exists % 100 == 0:
            logging.info('unnecessarily pushed %d/%d blobs (%.1f%%)' % (
                self._already_exists, self._num_pushes,
                100.0 * self._already_exists / self._num_pushes))
        else:
          logging.error('gRPC error during push: throwing as IOError (%s)' % r)
          raise IOError(r)
      except Exception as e:
        logging.error('error during push: throwing as IOError (%s)' % e)
        raise IOError(e)

      if response is not None and response.committed_size != item.size:
        raise IOError('%s/%d: incorrect size written (%d)' % (
            item.digest, item.size, response.committed_size))
      elif response is None and item.size > 0:
        # This happens when the content generator is exhausted and the gRPC call
        # simply returns None. Throw gRPC error as this is not recoverable.
        raise grpc.RpcError('None gRPC response on uploading %s' % item.digest)

    finally:
      with self._lock:
        self._memory_use -= item.size
示例#21
0
def _raise_non_retryable_grpc_error(*args):
  del args  # Unused
  error = grpc.RpcError()
  error.code = lambda: grpc.StatusCode.ABORTED
  raise error
示例#22
0
 def DeleteStates(self, request, context):
     for state_id in request.ids:
         if state_id.type == LOG_TYPE:
             raise grpc.RpcError("Test Exception")
     return Void()
示例#23
0
 def testExistsExceptionParser(self):
     response = grpc.RpcError()
     response.code = lambda: grpc.StatusCode.ALREADY_EXISTS
     response.details = lambda: "already exists"
     self.assertRaises(opencue.exception.EntityAlreadyExistsException,
                       lambda: testRaise(response))
示例#24
0
文件: client.py 项目: Mshaffar/feast
    def get_online_features(
        self,
        feature_refs: List[str],
        entity_rows: List[GetOnlineFeaturesRequest.EntityRow],
        project: Optional[str] = None,
    ) -> GetOnlineFeaturesResponse:
        """
        Retrieves the latest online feature data from Feast Serving

        Args:
            feature_refs: List of feature references that will be returned for each entity.
                Each feature reference should have the following format:
                "feature_set:feature" where "feature_set" & "feature" refer to
                the feature and feature set names respectively.
                Only the feature name is required.
            entity_rows: List of GetFeaturesRequest.EntityRow where each row
                contains entities. Timestamp should not be set for online
                retrieval. All entity types within a feature
            project: Specifies the project which contain the FeatureSets
                which the requested features belong to.

        Returns:
            Returns a list of maps where each item in the list contains the
            latest feature values for the provided entities
        """
        self._connect_serving()

        try:
            response = self._serving_service_stub.GetOnlineFeatures(
                GetOnlineFeaturesRequest(
                    features=_build_feature_references(
                        feature_ref_strs=feature_refs,
                        project=project
                        if project is not None else self.project,
                    ),
                    entity_rows=entity_rows,
                ))
            # collect entity row refs
            entity_refs = set()
            for entity_row in entity_rows:
                entity_refs.update(entity_row.fields.keys())

            strip_field_values = []
            for field_value in response.field_values:
                # strip the project part the string feature references returned from serving
                strip_fields = {}
                for ref_str, value in field_value.fields.items():
                    # find and ignore entities
                    if ref_str in entity_refs:
                        strip_fields[ref_str] = value
                    else:
                        strip_ref_str = repr(
                            FeatureRef.from_str(ref_str, ignore_project=True))
                        strip_fields[strip_ref_str] = value
                strip_field_values.append(
                    GetOnlineFeaturesResponse.FieldValues(fields=strip_fields))

            del response.field_values[:]
            response.field_values.extend(strip_field_values)

        except grpc.RpcError as e:
            raise grpc.RpcError(e.details())

        return response
示例#25
0
 def testInternalExceptionParser(self):
     response = grpc.RpcError()
     response.code = lambda: grpc.StatusCode.INTERNAL
     response.details = lambda: "Internal Error"
     self.assertRaises(opencue.exception.CueInternalErrorException,
                       lambda: testRaise(response))
示例#26
0
    def get_historical_features(
        self,
        feature_refs: List[str],
        entity_rows: Union[pd.DataFrame, str],
        compute_statistics: bool = False,
        project: str = None,
    ) -> RetrievalJob:
        """
        Retrieves historical features from a Feast Serving deployment.

        Args:
            feature_refs: List of feature references that will be returned for each entity.
                Each feature reference should have the following format:
                "feature_set:feature" where "feature_set" & "feature" refer to
                the feature and feature set names respectively.
                Only the feature name is required.
            entity_rows (Union[pd.DataFrame, str]):
                Pandas dataframe containing entities and a 'datetime' column.
                Each entity in a feature set must be present as a column in this
                dataframe. The datetime column must contain timestamps in
                datetime64 format.
            compute_statistics (bool):
                Indicates whether Feast should compute statistics over the retrieved dataset.
            project: Specifies the project which contain the FeatureSets
                which the requested features belong to.

        Returns:
            feast.job.RetrievalJob:
                Returns a retrival job object that can be used to monitor retrieval
                progress asynchronously, and can be used to materialize the
                results.

        Examples:
            >>> from feast import Client
            >>> from datetime import datetime
            >>>
            >>> feast_client = Client(core_url="localhost:6565", serving_url="localhost:6566")
            >>> feature_refs = ["my_project/bookings_7d", "booking_14d"]
            >>> entity_rows = pd.DataFrame(
            >>>         {
            >>>            "datetime": [pd.datetime.now() for _ in range(3)],
            >>>            "customer": [1001, 1002, 1003],
            >>>         }
            >>>     )
            >>> feature_retrieval_job = feast_client.get_historical_features(
            >>>     feature_refs, entity_rows, project="my_project")
            >>> df = feature_retrieval_job.to_dataframe()
            >>> print(df)
        """

        # Retrieve serving information to determine store type and
        # staging location
        serving_info = self._serving_service.GetFeastServingInfo(
            GetFeastServingInfoRequest(),
            timeout=self._config.getint(
                CONFIG_GRPC_CONNECTION_TIMEOUT_DEFAULT_KEY),
            metadata=self._get_grpc_metadata(),
        )  # type: GetFeastServingInfoResponse

        if serving_info.type != FeastServingType.FEAST_SERVING_TYPE_BATCH:
            raise Exception(
                f'You are connected to a store "{self.serving_url}" which '
                f"does not support batch retrieval ")

        if isinstance(entity_rows, pd.DataFrame):
            # Pandas DataFrame detected

            # Remove timezone from datetime column
            if isinstance(entity_rows["datetime"].dtype,
                          pd.core.dtypes.dtypes.DatetimeTZDtype):
                entity_rows["datetime"] = pd.DatetimeIndex(
                    entity_rows["datetime"]).tz_localize(None)
        elif isinstance(entity_rows, str):
            # String based source
            if not entity_rows.endswith((".avro", "*")):
                raise Exception(
                    "Only .avro and wildcard paths are accepted as entity_rows"
                )
        else:
            raise Exception(f"Only pandas.DataFrame and str types are allowed"
                            f" as entity_rows, but got {type(entity_rows)}.")

        # Export and upload entity row DataFrame to staging location
        # provided by Feast
        staged_files = export_source_to_staging_location(
            entity_rows, serving_info.job_staging_location)  # type: List[str]
        request = GetBatchFeaturesRequest(
            features=_build_feature_references(
                feature_ref_strs=feature_refs,
                project=project if project is not None else self.project,
            ),
            dataset_source=DatasetSource(file_source=DatasetSource.FileSource(
                file_uris=staged_files,
                data_format=DataFormat.DATA_FORMAT_AVRO)),
            compute_statistics=compute_statistics,
        )

        # Retrieve Feast Job object to manage life cycle of retrieval
        try:
            response = self._serving_service.GetBatchFeatures(
                request, metadata=self._get_grpc_metadata())
        except grpc.RpcError as e:
            raise grpc.RpcError(e.details())

        return RetrievalJob(
            response.job,
            self._serving_service,
            auth_metadata_plugin=self._auth_metadata,
        )
示例#27
0
    def EvaluateScript(self, header, request, context, func_type):
        """
        Evaluates script provided in the header, given the
        arguments provided in the sequence of RowData objects, the request.

        :param header:
        :param request: an iterable sequence of RowData.
        :param context: the context sent from client
        :param func_type: function type.
        :return: an iterable sequence of RowData.
        """
        # Retrieve data types from header
        arg_types = self.get_arg_types(header)
        ret_type = self.get_return_type(header)

        logging.info('EvaluateScript: {} ({} {}) {}'.format(
            header.script, arg_types, ret_type, func_type))

        aggr = (func_type == FunctionType.Aggregation)

        # Check if parameters are provided
        if header.params:
            # Verify argument type
            if arg_types == ArgType.String:
                # Create an empty list if tensor function
                if aggr:
                    all_rows = []

                # Iterate over bundled rows
                for request_rows in request:
                    # Iterate over rows
                    for row in request_rows.rows:
                        # Retrieve numerical data from duals
                        params = self.get_arguments(context, arg_types,
                                                    row.duals)

                        if aggr:
                            # Append value to list, for later aggregation
                            all_rows.append(params)
                        else:
                            # Evaluate script row wise
                            yield self.evaluate(context,
                                                header.script,
                                                ret_type,
                                                params=params)

                # Evaluate script based on data from all rows
                if aggr:
                    params = [list(param) for param in zip(*all_rows)]
                    yield self.evaluate(context,
                                        header.script,
                                        ret_type,
                                        params=params)
            else:
                # This plugin does not support other argument types than string.
                # Make sure the error handling, including logging, works as intended in the client
                msg = 'Argument type: {} not supported in this plugin.'.format(
                    arg_types)
                context.set_code(grpc.StatusCode.UNIMPLEMENTED)
                context.set_details(msg)
                # Raise error on the plugin-side
                raise grpc.RpcError(grpc.StatusCode.UNIMPLEMENTED, msg)

        else:
            # This plugin does not support script evaluation without parameters
            # Make sure the error handling, including logging, works as intended in the client
            msg = 'Script evaluation with no parameters is not supported in this plugin.'
            context.set_code(grpc.StatusCode.UNIMPLEMENTED)
            context.set_details(msg)
            # Raise error on the plugin-side
            raise grpc.RpcError(grpc.StatusCode.UNIMPLEMENTED, msg)
示例#28
0
def grpc_error(code, details):
  # Monkey patch insertion for the methods a real grpc.RpcError would have.
  error = grpc.RpcError("RPC error %r: %s" % (code, details))
  error.code = lambda: code
  error.details = lambda: details
  return error
示例#29
0
文件: _server.py 项目: ykrylov/grpc
def _raise_rpc_error(state):
    rpc_error = grpc.RpcError()
    state.rpc_errors.append(rpc_error)
    raise rpc_error
示例#30
0
def _raise_grpc_error_deadline_exceeded(*args):
    del args  # Unused
    error = grpc.RpcError()
    error.code = lambda: grpc.StatusCode.DEADLINE_EXCEEDED
    raise error